soundcloud download to mp3

HTC Evo 4G (supersonic)

HTC Evo 4G ("supersonic") Cyanogenmod

Cyanogenmod ROM HTC Evo 4G (supersonic)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the ics branch of CyanogenMod.

Special boot modes

  • Recovery: Vol Down & Power then select recovery

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_supersonic
Kernel http://www.github.com/cyanogenmod/htc-kernel-supersonic
Evo 4G Specifications
Codename: supersonic
Vendor: HTC
Manufacturer: HTC
Release date: 2010 June 4 (USA)
Carrier: Sprint
Type: phone
WiMAX freq: 802.16e
CDMA freq: Dual-Band CDMA 800 1900 MHz EVDO Rev. A
Platform: Qualcomm QSD8650
CPU: 1 GHz single-core Qualcomm Snapdragon S1
RAM: 512MB
Weight: 170 g (6 oz)
Dimensions: 122 mm (4.8 in) (h)
66 mm (2.6 in) (w)
12.7 mm (0.50 in) (d)
Screen size: 109 mm (4.3 in)
Resolution: 800×480
Screen density: 217 ppi
Screen type: TFT LCD
Internal storage: 1GB
SD Card: up to 32GB
Bluetooth: 2.1+EDR w A2DP Stereo
Wi-Fi: 802.11b/g/n
Main camera: 8MP w/ dual LED flash
Secondary camera: 1.3MP
Power: 1500 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: micro-USB, A-GPS, FM Radio, capacitive touchscreen, proximity and motion sensors, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: ics

How to Install CyanogenMod on the HTC Evo 4G (supersonic)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Obtaining S-OFF and installing a custom recovery on the Evo 4G

Certain HTC devices can be exploited via a tool called Revolutionary to obtain S-OFF. The status of your device’s support can be checked at their site. Pay close attention to the HBOOT revision as newer updates break the tool’s ability to work properly. The Revolutionary tool will also install ClockworkMod Recovery.

Supported version(s) of HBOOT for the Evo 4G: 2.15.0001, 2.16.0001.

  1. Windows Only: Download and install HTC USB drivers v3.0.0.007
    md5: f60771a86c4ad69c8c9c1d158e60e850
  2. Disable Fast Boot on the Evo 4G (not to be confused with fastboot):
    Settings » Power » Fast Boot
    (or)
    Settings » Applications » Fast Boot
  3. Enable USB debugging:
    Settings » Applications » Development » USB debugging
  4. Connect the Evo 4G to the computer via USB
  5. Find your device’s HBOOT version:
    From a command prompt or terminal, type: adb reboot bootloader
    If your HBOOT version is NOT 2.15.0001, 2.16.0001, you will need to downgrade. To downgrade your Evo 4G from Gingerbread (Including HBOOT 2.18) to Froyo, so you can root with unrEVOked v3.32 and gain RADIO S-OFF, follow this guide: [[1]]
  6. Write down the serial number of the device:
    If at the bootloader: fastboot devices
    If Android is booted: adb devices
    Alternatively, the serial number can usually be found under the battery
  7. Download Revolutionary 0.4pre4
  8. Fill out the form on the Revolutionary site to get a beta key.
  9. Once you have the beta key, launch the Revolutionary beta (you may need to launch it as root or administrator) and enter in the beta key minding that the key contains both upper- and lower-case letters.
  10. Revolutionary will now attempt to temp-root your device, set S-OFF, and install a custom recovery image. The device will reboot on its own and the entire process should only take a few minutes. If the process takes longer than 15 minutes, reboot the device and attempt again. Some users have had to attempt S-OFF multiple times before achieving success.

NOTE: If you are unable to S-OFF your device, and it is listed as supported by Revolutionary, join the Revolutionary IRC channel for further assistance.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Vol Down & Power then select recovery
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Evo 4G (supersonic)

Introduction

These instructions will hopefully assist you to start with a stock Evo 4G, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Evo 4G
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Evo 4G (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b ics

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast supersonic

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast supersonic

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Evo 4G is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/supersonic directory (you can cd ~/android/system/device/htc/supersonic if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch supersonic

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make supersonic should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/supersonic/cm_supersonic-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-9-20161224-UNOFFICIAL-supersonic.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-9-20161224-UNOFFICIAL-supersonic.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Evo Shift 4G (speedy)

HTC Evo Shift 4G ("speedy") Cyanogenmod

Cyanogenmod ROM HTC Evo Shift 4G (speedy)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

This guide assumes the device is running Android 2.2. If the device is running >=2.3, see this link: http://forum.xda-developers.com/showthread.php?t=1255474

Special boot modes

  • Recovery: Vol Down & Power then select recovery

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_speedy
Evo Shift 4G Specifications
Codename: speedy
Vendor: HTC
Manufacturer: HTC
Release date: 2011 January 9 (USA)
Type: phone
WiMAX freq: 802.16e
CDMA freq: Dual-Band CDMA 800 1900 MHz EVDO Rev. A
Platform: Qualcomm MSM7630
CPU: 800 MHz single-core Qualcomm Snapdragon S2
RAM: 512MB
Weight: 167 g (5.9 oz)
Dimensions: 117 mm (4.6 in) (h)
60 mm (2.36 in) (w)
16 mm (0.63 in) (d)
Screen size: 91 mm (3.6 in)
Resolution: 800×480
Screen density: 259 ppi
Screen type: TFT LCD
Internal storage: 1GB
SD Card: up to 32GB
Bluetooth: 2.1+EDR w A2DP Stereo
Wi-Fi: 802.11b/g/n
Main camera: 5MP w/ LED flash
Power: 1500 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: micro-USB, A-GPS, FM Radio, capacitive touchscreen, proximity and ambient light sensors, optical joystick, volume controls, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Evo Shift 4G (speedy)

Introduction

These instructions will hopefully assist you to start with a stock Evo Shift 4G, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Evo Shift 4G
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Evo Shift 4G (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_speedy-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_speedy-userdebug

or

$ lunch full_speedy-userdebug

If all goes well, you should see that speedy-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Evo Shift 4G is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/speedy directory (you can cd ~/android/system/device/htc/speedy if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch speedy

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make speedy should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/speedy/cm_speedy-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-speedy.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-speedy.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Amaze 4G (ruby)

HTC Amaze 4G ("ruby") Cyanogenmod

Cyanogenmod ROM HTC Amaze 4G (ruby)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Special boot modes

  • Recovery: Volume Down & Power

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_ruby
Kernel http://www.github.com/cyanogenmod/android_kernel_htc_msm8660
Amaze 4G Specifications
Codename: ruby
Vendor: HTC
Release date: 2011 October 12
Carrier: T-Mobile
Type: phone
GSM freq: 850 900 1700/2100 1800 1900 2100 MHz HSDPA+ (4G) 42.2 Mbit/s, UMTS, EDGE
Platform: Qualcomm APQ8060
CPU: 1.5 GHz dual-core Scorpion Snapdragon S3
GPU: Adreno 220
RAM: 1GB
Weight: 173 g (6.10 oz)
Dimensions: 130 mm (5.12 in) (h)
65.6 mm (2.58 in) (w)
11.8 mm (0.46 in) (d)
Screen size: 109 mm (4.3 in)
Resolution: 540×960
Screen density: 256 PPI
Internal storage: 16 GB
SD Card: microSD, microSDHC up to 32 GB
Bluetooth: 3.0
Wi-Fi: 802.11 a/b/g/n
Main camera: 8MP Dual LED
Secondary camera: 2MP
Power: 1730 mAh removable
Peripherals: Light sensor, Proximity sensor, Accelerometer, Compass, NFC, MHL, UMA
CM supported: 10
Latest CM version: jellybean

How to Install CyanogenMod on the HTC Amaze 4G (ruby)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Unlocking the bootloader

WARNING:

Unlocking the bootloader will automatically wipe all device data.

Note:

The Amaze 4G can be unlocked officially via the HTC Dev unlock program. This unlock method may have certain restrictions, such as not being able to flash a kernel via recovery (no longer applicable to 2013+ released HTC devices) or no USB access to sdcard in recovery. Some devices, however, have no other method to install custom firmware.

  1. Make sure your computer has working fastboot and adb.
  2. Enable USB debugging on the device.
  3. Enable OEM unlock in the Developer options settings on the device. (Note: Not all devices have this setting, so continue with next step if yours does not.)
  4. Connect the device to the computer through USB.
  5. From a terminal on a computer, type the following to boot the device into fastboot mode:
    adb reboot bootloader
  6. Once the device is in fastboot mode, verify your PC sees the device by typing fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissions fastboot”, try running fastboot as root.
  7. From the same terminal, type the following command to obtain your bootloader unlock token:
    fastboot oem get_identifier_token
  8. Visit the HTCDev Bootloader Unlock website and follow the instructions there to obtain your unlock key and unlock your bootloader. If your device does not appear in the drop-down list, select All Other Supported Models.
  9. If the device doesn’t automatically reboot, reboot it from the menu. It should now be unlocked.
  10. Since the device resets completely, you will need to re-enable USB debugging on the device to continue.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  2. Download recovery — you can directly download a recovery image using the link below, or visit twrp.me to obtain the latest version of Team Win Recovery Project for your device.
    Recovery: Download
    md5: 93f4a333d22573a3b0bb735887d83163
  3. Connect the Amaze 4G to the computer via USB.
  4. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  5. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  6. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  7. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  8. Once the flash completes successfully, reboot the device into recovery to verify the installation. Boot to recovery instructions: Volume Down & Power
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Installing CyanogenMod from recovery

Note:

This device, if unlocked with HTCDev Unlock, must have its kernel flashed via fastboot. When you reach the end of the instructions below, do not restart your device to CyanogenMod yet. Instead, restart to the bootloader and put the phone in fastboot mode. Extract boot.img from the CyanogenMod .zip package you just installed and flash it via fastboot: cd to the directory containing boot.img and execute fastboot flash boot boot.img. This needs to be done EVERY time CyanogenMod is updated, thus it is recommended to not use the internal CM updater. The alternative to this burden is to S-OFF your device (recommended), then the boot partition will automatically be updated when CyanogenMod is installed or updated.

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • Volume Down & Power
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Amaze 4G (ruby)

Introduction

These instructions will hopefully assist you to start with a stock Amaze 4G, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Amaze 4G
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Amaze 4G (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast ruby

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast ruby

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Amaze 4G is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/ruby directory (you can cd ~/android/system/device/htc/ruby if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch ruby

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make ruby should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/ruby/cm_ruby-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-ruby.zip, which is the CyanogenMod installation package.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  1. Connect the Amaze 4G to the computer via USB.
  2. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  3. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  4. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  5. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  6. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-ruby.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Aria (liberty)

HTC Aria ("liberty") Cyanogenmod

Cyanogenmod ROM HTC Aria (liberty)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Vol Down & Power then select recovery

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_liberty
Aria Specifications
Codename: liberty
Vendor: HTC
Manufacturer: HTC
Release date: 2010 June 20 (USA)
Type: phone
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE

850 1900 MHz UMTS/HSPA (USA)
900 2100 MHz UMTS/HSPA (ASIA)

Platform: Qualcomm MSM7227
CPU: 600 MHz single-core Qualcomm
RAM: 384MB
Weight: 115 g (4.1 oz)
Dimensions: 104 mm (4.1 in) (h)
58.4 mm (2.3 in) (w)
11.7 mm (0.46 in) (d)
Screen size: 81 mm (3.2 in)
Resolution: 480×320
Screen density: 180 ppi
Screen type: TFT LCD
Internal storage: 512MB
SD Card: yes
Bluetooth: 2.1+EDR w A2DP Stereo
Wi-Fi: (802.11b/g)
Main camera: 5MP
Power: 1200 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: micro-USB, A-GPS, FM Radio, capacitive touchscreen display, digital compass, proximity and ambient light sensors, optical joystick, volume controls, 3-axis accelerometer
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the HTC Aria (liberty)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Obtaining S-OFF and installing a custom recovery on the Aria

Certain HTC devices can be exploited via a tool called Revolutionary to obtain S-OFF. The status of your device’s support can be checked at their site. Pay close attention to the HBOOT revision as newer updates break the tool’s ability to work properly. The Revolutionary tool will also install ClockworkMod Recovery.

Supported version(s) of HBOOT for the Aria: 1.02.0000.

  1. Windows Only: Download and install HTC USB drivers v3.0.0.007
    md5: f60771a86c4ad69c8c9c1d158e60e850
  2. Disable Fast Boot on the Aria (not to be confused with fastboot):
    Settings » Power » Fast Boot
    (or)
    Settings » Applications » Fast Boot
  3. Enable USB debugging:
    Settings » Applications » Development » USB debugging
  4. Connect the Aria to the computer via USB
  5. Find your device’s HBOOT version:
    From a command prompt or terminal, type: adb reboot bootloader
    If your HBOOT version is NOT 1.02.0000, you will need to downgrade. To downgrade your Aria from Gingerbread (Including HBOOT 2.18) to Froyo, so you can root with unrEVOked v3.32 and gain RADIO S-OFF, follow this guide: [[1]]
  6. Write down the serial number of the device:
    If at the bootloader: fastboot devices
    If Android is booted: adb devices
    Alternatively, the serial number can usually be found under the battery
  7. Download Revolutionary 0.4pre4
  8. Fill out the form on the Revolutionary site to get a beta key.
  9. Once you have the beta key, launch the Revolutionary beta (you may need to launch it as root or administrator) and enter in the beta key minding that the key contains both upper- and lower-case letters.
  10. Revolutionary will now attempt to temp-root your device, set S-OFF, and install a custom recovery image. The device will reboot on its own and the entire process should only take a few minutes. If the process takes longer than 15 minutes, reboot the device and attempt again. Some users have had to attempt S-OFF multiple times before achieving success.

NOTE: If you are unable to S-OFF your device, and it is listed as supported by Revolutionary, join the Revolutionary IRC channel for further assistance.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Vol Down & Power then select recovery
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Aria (liberty)

Introduction

These instructions will hopefully assist you to start with a stock Aria, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Aria
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Aria (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_liberty-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_liberty-userdebug

or

$ lunch full_liberty-userdebug

If all goes well, you should see that liberty-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Aria is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/liberty directory (you can cd ~/android/system/device/htc/liberty if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch liberty

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make liberty should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/liberty/cm_liberty-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-liberty.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-liberty.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Incredible (inc)

Cyanogenmod ROM HTC Incredible (inc)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

This guide applies to Incredibles running basebands 1.00.03.04.06, 2.05.00.06.11, 2.07.00.07.16, 2.15.00.07.28, and 2.15.00.09.01 ONLY.

Special boot modes

  • Recovery: Vol Down & Power then select recovery

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_inc
Incredible Specifications
Codename: inc
Vendor: HTC
Manufacturer: HTC
Release date: 2010 April 29 (USA)
Carrier: Verizon
Type: phone
CDMA freq: 800 1900 MHz CDMA
2000 MHz 1xEV-DO
Platform: Qualcomm QSD8650
CPU: 1 GHz single-core Qualcomm Snapdragon S1
GPU: Adreno 200
RAM: 512MB
Weight: 130 g (4.6 oz)
Dimensions: 118 mm (4.6 in) (h)
59 mm (2.3 in) (w)
12 mm (0.5 in) (d)
Screen size: 94 mm (3.7 in)
Resolution: 800×480
Screen density: 252 ppi
Screen type: AMOLED
Internal storage: 1GB with an 8GB emmc
SD Card: yes
Bluetooth: 2.1+EDR w A2DP Stereo
Wi-Fi: 802.11b/g/n
Main camera: 8MP w/ dual LED flash
Power: 1300 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: micro-USB, A-GPS, FM Radio, capacitive touchscreen, optical joystick, volume controls, proximity & ambient light sensors, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Rooting the HTC Incredible

Unrevoked Method

  1. Go to the unrevoked website.
  2. Select the HTC Incredible.
  3. Download the option for operating system on the computer.
  4. If you are on Windows, install the HBOOT driver.
  5. Turn on “USB Debugging”: Menu >> Settings >> Applications >> Development
  6. Connect the HTC Incredible & set the connection mode to “Charge Only”
  7. Run the unrevoked software.
    • The process takes a minute or two and in the end HTC Incredible should boot into the ClockworkMod Recovery.
  8. Once complete, the HTC Incredible will have SU access and ClockworkMod Recovery will be installed in place of stock recovery.

Known Issues

  • Shutting down the phone with USB plugged in will start ClockworkMod Recovery in an unreliable mode.
  • Shutting down the phone and then plugging in USB will also start ClockworkMod Recovery in an unreliable mode.
  • The HTC Battery charge icon is replaced by ClockworkMod. Charge with the phone running in standby mode.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Vol Down & Power then select recovery
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Post-Installation

If you’re on Verizon, you may need perform the following:

  1. Launch the Phone app.
  2. Enter in *228
  3. Select option 1 to reprogram & enable 3G on the HTC Incredible. If you can’t find a keypad, hold the menu button down.

How To Build CyanogenMod For HTC Incredible (inc)

Introduction

These instructions will hopefully assist you to start with a stock Incredible, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Incredible
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Incredible (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_inc-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_inc-userdebug

or

$ lunch full_inc-userdebug

If all goes well, you should see that inc-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Incredible is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/inc directory (you can cd ~/android/system/device/htc/inc if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch inc

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make inc should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/inc/cm_inc-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-inc.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-inc.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Raider 4G (holiday)

HTC Raider 4G ("holiday") Cyanogenmod

Cyanogenmod ROM HTC Raider 4G (holiday)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Notes

This device is supported by JuopunutBear S-OFF Public Beta

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_holiday
Kernel http://www.github.com/cyanogenmod/android_kernel_htc_holiday
Raider 4G Specifications
Codename: holiday
Vendor: HTC
Type: phone
Platform: Qualcomm MSM8660
CPU: 1.2 GHz dual-core Scorpion
GPU: Adreno 220
RAM: 1GB
Weight: 177 g (6.24 oz)
Screen size: 114 mm (4.5 in)
Resolution: 540×960
Screen density: 245 ppi
Screen type: TFT LCD
Internal storage: 16GB
SD Card: up to 32GB
Bluetooth: 3.0 with A2DP, EDR
Wi-Fi: 802.11 b/g/n
Main camera: 8MP, flash: dual-LED
Secondary camera: 1.3MP
Power: 1620 mAh Li-Ion
Peripherals: accelerometer, gyro, proximity, A-GPS, FM radio
CM supported: 10

How to Install CyanogenMod on the HTC Raider 4G (holiday)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

This device is supported by JuopunutBear S-OFF Public Beta

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  2. Download recovery — you can directly download a recovery image using the link below, or visit download.cyanogenmod.org to obtain the latest version of CyanogenMod Recovery for your device.
    Recovery: Download
    md5: 884b976ebb4cc1432ad73b8bff1703bd
  3. Connect the Raider 4G to the computer via USB.
  4. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  5. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  6. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  7. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  8. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Raider 4G (holiday)

Introduction

These instructions will hopefully assist you to start with a stock Raider 4G, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Raider 4G
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Raider 4G (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast holiday

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast holiday

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Raider 4G is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/holiday directory (you can cd ~/android/system/device/htc/holiday if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch holiday

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make holiday should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/holiday/cm_holiday-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-holiday.zip, which is the CyanogenMod installation package.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  1. Connect the Raider 4G to the computer via USB.
  2. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  3. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  4. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  5. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  6. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-holiday.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Hero (GSM) (hero)

HTC Hero (GSM) ("hero") Cyanogenmod

Cyanogenmod ROM HTC Hero (GSM) (hero)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Home & Power

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_hero
Hero (GSM) Specifications
Codename: hero
Vendor: HTC
Release date: 2009 June 24 (UK)
2009 July (EUR)
Type: phone
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE
900 2100 MHz UMTS/HSPA (EUR)
850 1900 MHz UMTS/HSPA (USA)
Platform: Qualcomm MSM7200A
CPU: 528 MHz single-core Qualcomm ARM11
RAM: 288MB
Weight: 135 g (4.8 oz)
Dimensions: 112 mm (4.4 in) (h)
56.2 mm (2.21 in) (w)
14.35 mm (0.565 in) (d)
Screen size: 81 mm (3.2 in)
Resolution: 480×320
Internal storage: 256MB
SD Card: up to 32GB
Bluetooth: 2.0+EDR
Wi-Fi: 802.11b/g
Main camera: 5MP
Power: 1340 mAh Internal rechargeable removable lithium-ion battery
Peripherals: capacitive touchscreen, volume controls, ambient light sensors, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the HTC Hero (GSM) (hero)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing a recovery image using flash_image

Use of the flash_image binary assumes your device already has root. For more detailed instructions on using the tools in this guide, please visit ADB.

  1. Download the flash_image binary
  2. Install the binary into /data/local on your phone via adb and set permissions
    • adb push flash_image /data/local/
    • adb shell chmod 777 /data/local/flash_image
  3. Download koush’s ClockworkMod Recovery.
    • koush’s ClockworkMod Recovery: download
      md5: 4e576c048d8d4d8890e755992577a5bc
  4. Push the file(s) to your device via adb.
    • adb push yourrecoveryimage.img /data/local/
    • adb shell chmod 777 /data/local/yourrecoveryimage.img
    • adb shell rm /data/local/rights/mid.txt
    • adb shell ln -s /dev/mtd/mtd1 /data/local/rights/mid.txt
    • adb reboot

Wait for device to reboot fully.

Flash the recovery:

  1. adb shell /data/local/flash_image recovery /data/local/yourrecoveryimage.img

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Home & Power
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Hero (GSM) (hero)

Introduction

These instructions will hopefully assist you to start with a stock Hero (GSM), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Hero (GSM)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Hero (GSM) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_hero-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_hero-userdebug

or

$ lunch full_hero-userdebug

If all goes well, you should see that hero-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Hero (GSM) is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/hero directory (you can cd ~/android/system/device/htc/hero if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch hero

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make hero should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/hero/cm_hero-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-hero.zip, which is the CyanogenMod installation package.

Installing a recovery image using flash_image

Use of the flash_image binary assumes your device already has root. For more detailed instructions on using the tools in this guide, please visit ADB.

  1. Download the flash_image binary
  2. Install the binary into /data/local on your phone via adb and set permissions
    • adb push flash_image /data/local/
    • adb shell chmod 777 /data/local/flash_image
  3. Download {{{install_devname}}}’s ClockworkMod Recovery.
    • {{{install_devname}}}’s ClockworkMod Recovery: [{{{install_file}}} download]
      md5: {{{install_md5sum}}}
  4. Push the file(s) to your device via adb.
    • adb push yourrecoveryimage.img /data/local/
    • adb shell chmod 777 /data/local/yourrecoveryimage.img

Flash the recovery:

  1. adb shell /data/local/flash_image recovery /data/local/yourrecoveryimage.img

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-hero.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC myTouch 4G / Panache (glacier)

HTC myTouch 4G / Panache ("glacier") Cyanogenmod

Cyanogenmod ROM HTC myTouch 4G / Panache (glacier)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Vol Down & Power

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_glacier
myTouch 4G / Panache Specifications
Codename: glacier
Also known as: myTouch 4G, Panache
Vendor: HTC
Manufacturer: HTC
Release date: 2010 Nov 3 (USA)
Type: phone
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE
1700 2100 MHz UMTS/HSPA+
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
RAM: 768MB
Weight: 150 g (5.3 oz)
Dimensions: 122 mm (4.8 in) (h)
62 mm (2.44 in) (w)
10.9 mm (0.43 in) (d)
Screen size: 97 mm (3.8 in)
Resolution: 800×480
Screen density: 246 ppi
Screen type: TFT LCD
Internal storage: 4GB
SD Card: up to 32GB
Bluetooth: 2.1+EDR w A2DP Stereo
Wi-Fi: 802.11b/g/n
Main camera: 5MP w/ LED flash
Secondary camera: 0.3MP
Power: 1400 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: micro-USB, A-GPS, FM Radio, capacitive touchscreen, digital compass, proximity & ambient light sensors, 3-axis accelerometer
CM supported: 7
Latest CM version: gingerbread

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

This guide will walk you through the process of taking the HTC Glacier from stock to having the ability to flash a custom recovery image & the latest version of CyanogenMod.

Downgrading to 1.17.531.2

If the HTC Glacier is running a Gingerbread firmware (2.xx.xxx.x) (Settings » About Phone) you need to downgrade the device first in order to root. If the HTC Glacier is already running 1.17.531.2 or lower you can skip to the Rooting the HTC Glacier section.

  1. You will need ADB on the computer to proceed thru this process. Follow the Android SDK guide, to get the ADB shell on the computer.
  2. Download fre3vo, misc_version 0.2 & the 1.17.531.2 firmware:
    • fre3vo: Download
      md5: 010e076a4a93be876579711bf8934c70
    • misc_version 0.2: Download
      md5: 1f40aaf88d1bf15775631a58c4361218
    • flashgc: Download
      md5: 86e6e81fad3b3c837ed8bd09b6005651
    • 1.17.531.2 firmware: Download
      md5: 49d07f0ee7de1765a6a84cb12fa53110
  3. Unzip the fre3vo & misc_version packages and save flashgc to the same folder as adb (the /platform-tools folder within the Android SDK folder).
  4. Make sure the filename of the firmware is PD15IMG.zip exactly or it will not work and copy it to the same folder as adb.
  5. Connect the HTC Glacier to the computer via USB.
  6. Make sure USB debugging is enabled on the HTC Glacier by checking Settings » Applications » Development » USB debugging.
  7. Also ensure that Default Connection Type is set to ‘Charge Only, under Settings » Connect to PC » Default Connection Type.
  8. On the computer, open terminal and run the following commands:
    adb push fre3vo /data/local/tmp
    adb push misc_version /data/local/tmp
    adb push flashgc /data/local/tmp
    adb shell
    chmod 777 /data/local/tmp/fre3vo
    chmod 777 /data/local/tmp/misc_version
    chmod 777 /data/local/tmp/flashgc
    /data/local/tmp/fre3vo -debug -start FAA90000 -end FFFFFFFF
    adb shell

    NOTE: You should have the “#” sign instead of the “$”. If you do, you have temporary root, and can continue on. If you have the “$”, then the exploit has failed, refer to xda developers, RootzWiki, or #G2Root for further assistance.
    cd /data/local/tmp
    ./misc_version -s 1.00.000.0
    ./flashgc
    exit
  9. Now that misc version has been downgraded, the HTC Glacier is ready to have the firmware downgraded. On the computer, open terminal and run the following commands:
    adb push PD15IMG.zip /sdcard/PD15IMG.zip
    adb reboot bootloader
  10. Use Volume up/down keys on the HTC Glacier for navigation and Power key for confirmation. Select Bootloader to flash the 1.17.531.2firmware. This takes a bit of time, be patient, you’ll see a progress bar in the upper right.
  11. After a while, you will be asked if you want to proceed with the update. Select Yes.
  12. Occasionally this will fail, and the image will not be recognized. In this case, the image can be flashed via the fastboot executable as described in this xda developers thread (see section I-4b).
  13. Once finished you can can continue to the next section.

Rooting the device

  1. You will need ADB on the computer to root the HTC Glacier and to flash the necessary files for radio S-OFF. Follow the Android SDK guide, to get the ADB shell on the computer.
  2. Download busybox, the ClockworkMod Recovery, the Engineering HBoot, gfree 1.0, psneuter, root_psn, Superuser package:
    • busybox: Download
      md5: 25c5db694c987995909cc3166d4f01b0
    • ClockworkMod Recovery: Download
      md5: a5aea82ec2ad7b836c9c179fce0d520d
    • Engineering HBoot: Download
      md5: b2c8834905bfa2349f5223077493140a
    • gfree 1.0: Download
      md5: 0bc9fc22bda897c765b02066f8a3c83b
    • psneuter: Download
      md5: 89c2dec8d72d87b4c669f44dd31c8d17
    • root_psn: Download
      md5: c8fe38ef55eb8951def9ff17b2eb99c1
    • Superuser package: Download
      md5: 43d9a40b63e916635d5ad7ca32433fab
  3. Unzip the zip files and copy the contents to the same folder as adb (the /platform-tools folder within the Android SDK folder).
  4. Connect the HTC Glacier to the computer via USB.
  5. Make sure USB debugging is enabled on the HTC Glacier by checking Settings » Applications » Development » USB debugging.
  6. Also ensure that Default Connection Type is set to ‘Charge Only, under Settings » Connect to PC » Default Connection Type.
  7. On the computer, open terminal and run the following commands:
    adb push busybox /data/local/tmp/
    adb push gfree /data/local/tmp/
    adb push hboot-eng.img /data/local/tmp/
    adb push psneuter /data/local/tmp/
    adb push recovery-clockwork-5.0.2.0-glacier.img /data/local/tmp/recovery.img
    adb push root_psn /data/local/tmp/
    adb push su /sdcard/
    adb push Superuser.apk /sdcard/
    adb shell
    chmod 755 /data/local/tmp/*
    /data/local/tmp/psneuter

    NOTE: You will drop out of the shell after this command. Restart the shell using:
    adb shell
    cd /data/local/tmp
    ./gfree -f -b hboot-eng.img -y recovery.img
  8. As it is very important that the hboot was installed correctly gfree calculates md5sums of the partition. It will calculate the following 3 checksums
    • md5sum #1 – checksum of partition 18 before the installation
    • md5sum #2 – checksum of the hboot image that should be installed
    • md5sum #3 – checksum of partition 18 after the installation
  9. The messages that you what to see are either/or
    • md5sum #1 == md5sum #2 – the hboot image is already installed -> skipping installation
    • md5sum #3 == md5sum #2 – the hboot image was successfully installed -> OK!
  10. If you get a different error message then DO NOT REBOOT and join #G2Root on Freenode for further help.
  11. If gfree worked correctly continue with:
    ./root_psn
    sync
    reboot
  12. The HTC Glacier is now rooted with S-OFF, the Engineering HBoot & the ClockworkMod Recovery. Continue to the next section.

Note:

If you had to downgrade your phone following the directions in the first section (Downgrading to 1.17.531.2), you should delete the PD15IMG.zip from /sdcard, otherwise you won’t be able to install CM in the following section. Do this:

  1. Connect the HTC Glacier to the computer via USB.
  2. Make sure USB debugging is enabled on the HTC Glacier by checking Settings » Applications » Development » USB debugging.
  3. Make sure your phone is not mounted as a USB disk. Go to Settings » Connect to PC and select USB charge only.
  4. On the computer, open terminal and run the following command:
    adb shell
    rm /sdcard/PD15IMG.zip

Installing CyanogenMod from recovery

Prerequisites-decide now which method you want to use to install CyanogenMod (Sideload method or Push and install method). If you want to use the Sideload method, you will need a SD card and a card reader. If you want to use the push and install method, you will need to make sure your computer’s ADB is still working and can connect to your phone. The sideload method is more universal across devices, whereas the push and install method is more commonly used.

  1. Download one of the CyanogenMod package for your device to your computer. If you are uncertain of what to download read the Release Versioning page.
  2. Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
    • If using sideload method, copy the CyanogenMod package (do not extract) and any 3rd party application packages to the root directory of your SD card now. Then insert this card into your phone.
  3. Boot into Hboot by turning phone off then holding Vol Down & Power down for about 5 seconds and then releasing. The first line of text at the top of the screen should now read:
    GLACIER PVT ENG S-OFF
    Note the presence of the words ENG and S-OFF. This means that the gfree command worked in the previous section =)

    • If using the push and install method, connect the phone to your computer through USB at this time.
  4. Use the vol down button to select RECOVERY option and use the power button to select it. The phone should now be in ClockworkMod Recovery (give it a little time).
    It is important to note that the select key in this edition of ClockworkMod (v5.0.2.0) is NOT the power button. Use the silver camera button on the right lower side of the device to select.
  5. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  6. Select wipe data/factory reset.
  7. Select advanced>Wipe Davik Cache.
  8. Press the back button.
  9. Next, follow the procedures for the method you selected earlier:
    • If using the Sideload method: select install zip from sdcard > choose zip from sdcard and find the file you downloaded in in step 1. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • If using the Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  10. Once installation has finished, return to the main menu and select reboot system now. The device should now boot into CyanogenMod!

Note:

If after rebooting the phone, you see the splash screen of CM looping infinitely, don’t panic and do the following:

  1. Remove the battery (your only way of turning off the device right now). Wait a couple of seconds and put t back in.
  2. Boot into recovery by pressing the Vol Down button and then Power button briefly.
  3. Wipe data/factory reset
  4. Wipe cache
  5. Install rom zip from sdcard following the instructions in the previous section
  6. Reboot

How To Build CyanogenMod For HTC myTouch 4G / Panache (glacier)

Introduction

These instructions will hopefully assist you to start with a stock myTouch 4G / Panache, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A myTouch 4G / Panache
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the myTouch 4G / Panache (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_glacier-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_glacier-userdebug

or

$ lunch full_glacier-userdebug

If all goes well, you should see that glacier-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your myTouch 4G / Panache is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/glacier directory (you can cd ~/android/system/device/htc/glacier if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch glacier

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make glacier should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/glacier/cm_glacier-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-glacier.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-glacier.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC Droid Incredible 4G LTE (fireball)

HTC Droid Incredible 4G LTE ("fireball") Cyanogenmod

Cyanogenmod ROM HTC Droid Incredible 4G LTE (fireball)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Notes

Note: Minimum supported firmware and end of life

Firmware version 2.19.605.2 (which contains radio version 1.53.06.1009) is required for WiFi to operate. Instructions on upgrading your firmware are on the Install page. // Unfortunately, because fireball never received an official Jellybean release from Verizon/HTC, some of the radio libraries and services are from the days of ICS and do not meet Lollipop’s requirement of using Position Independent Executables (PIEs). While the device is still capable, and unofficial builds of Lollipop exist for this device, official support had to be terminated after CyanogenMod 11.

Special boot modes

  • Recovery: With the device powered down, hold the Volume Down and Power buttons until HBOOT appears, then release the buttons. Navigate using the volume keys and select RECOVERY using the Power key.
  • Bootloader: With the device powered down, hold the Volume Down and Power buttons until HBOOT appears, then release the buttons.
  • Fastboot: With the device powered down, hold the Volume Down and Power buttons until HBOOT appears, then release the buttons. Navigate using the volume keys and select FASTBOOT using the Power key.

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_fireball
Kernel http://www.github.com/cyanogenmod/android_kernel_htc_msm8960
Droid Incredible 4G LTE Specifications
Codename: fireball
Vendor: HTC
Release date: 2012 July 5
Carrier: Verizon (global phone, other carriers supported)
Type: phone
CDMA freq: 800, 1900 MHz
LTE freq: 700 MHz
Platform: Qualcomm MSM8960
CPU: 1.2 GHz dual-core Krait
GPU: Adreno 225
RAM: 1GB
Weight: 132 g (4.66 oz)
Dimensions: 122 mm (4.82 in) (h)
61 mm (2.40 in) (w)
12 mm (0.46 in)
Screen size: 102 mm (4.0 in)
Resolution: 540×960
Screen density: 275 ppi
Screen type: S-LCD
Internal storage: 8GB
SD Card: up to 32GB
Bluetooth: 4.0
Wi-Fi: 802.11 a/b/g/n
Main camera: 8MP, flash: LED
Secondary camera: 0.3MP
Power: 1700 mAh
CM supported: 10.1, 10.2, 11

How to Install CyanogenMod on the HTC Droid Incredible 4G LTE (fireball)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

Note: Minimum supported firmware and end of life

Firmware version 2.19.605.2 (which contains radio version 1.53.06.1009) is required for WiFi to operate. Instructions on upgrading your firmware are on the Install page. // Unfortunately, because fireball never received an official Jellybean release from Verizon/HTC, some of the radio libraries and services are from the days of ICS and do not meet Lollipop’s requirement of using Position Independent Executables (PIEs). While the device is still capable, and unofficial builds of Lollipop exist for this device, official support had to be terminated after CyanogenMod 11.

Preparation, S-OFF, and Firmware Updates

Preparing your Droid Incredible 4G LTE for CyanogenMod

To mitigate any problems with GPS, it is strongly recommended to change the following Settings in your stock ROM before installing CyanogenMod:

  1. Enable all location services: Settings > Location > (all location services) = On

S-OFF vs. Unlocked Bootloader

You must have an unlocked bootloader or be S-OFF. S-OFF is recommended so that you can easily update the firmware on your device as well as install ROMs through recovery without needing to manually fastboot flash the boot partition with every install. Unfortunately, Verizon Wireless does not allow HTC to include the Droid Incredible 4G LTE in its unlocked bootloader program, so unless you obtained your Droid Incredible 4G LTE in the first week of availability and unlocked it then, S-OFF is your only option (not necessarily a bad thing).

Obtaining S-OFF

Before you begin, be sure that both ADB and fastboot are installed and working on your computer. With your phone booted and connected to your computer, you should be able to type adb devices to see your device’s serial number. Similarly, test fastboot by first rebooting your phone to the bootloader (adb reboot-bootloader) and then typing fastboot devices to see your serial number again. Only continue if you have working adb and fastboot!

  1. Obtain S-OFF using rumrunner – the Droid Incredible 4G LTE has its own special version of rumrunner compatible with v2.19.605.2. Look for the device-specific package on the downloads page. Be sure to donate to beaups after you achieve S-OFF!
  2. Install the engineered HBOOT by unlimited.io. We are only interested in the HBOOT download on the sidebar of unlimited.io/fireball.htm, under the section entitled DirtyRacun HBOOTs. The instructions listed on that page assume you are using linux (and even then sudo is unnecessary if your UDEV rules are setup correctly). You can substitute this set of commands, where it is assumed that your phone is booted and connected to your computer:
  • Reboot the device to HBOOT:
    adb reboot-bootloader
  • Enter the OEM update mode:
    fastboot oem rebootRUU
  • Flash the HBOOT update package. cd to the directory containing dr_hboot_1.15.zip and run:
    fastboot flash zip dr_hboot_1.15.zip
  • Wait for the process to finish
  • Reboot to the bootloader to verify your new HBOOT is installed:
    fastboot reboot-bootloader

From here, you can flash your favorite recovery. Because you used fastboot to wipe the cache partition, when you enter recovery, you should format (or wipe in some recoveries) the /cache partition to prepare it for reading/writing.

Updating to firmware v2.19.605.2

You must be S-OFF to follow these instructions!

These instructions are only for users that are already running CyanogenMod and would like to update their device’s firmware without reinstalling the stock manufacturer ROM. You can check to see whether you are already on the latest firmware under Settings > About phone, comparing the baseband to 1.53.06.1009. If you already have this baseband version, you do not need to upgrade. If your baseband displays an older version, then you can follow the instructions below.

Before you begin, be sure that both ADB and fastboot are installed and working on your computer. With your phone booted and connected to your computer, you should be able to type adb devices to see your device’s serial number. Similarly, test fastboot by first rebooting your phone to the bootloader (adb reboot-bootloader) and then typing fastboot devices to see your serial number again. Only continue if you have working adb and fastboot!

  1. Download fireball_firmware_2.19.605.2.zip
    md5: a424e27f2a216bd2031a6174bde46b5d
    It is imperative that you verify the md5sum before flashing!
  2. Reboot the device to HBOOT:
    adb reboot-bootloader
  3. Enter the OEM update mode:
    fastboot oem rebootRUU
  4. Flash the firmware package. cd to the directory containing fireball_firmware_2.19.605.2.zip and run:
    fastboot flash zip fireball_firmware_2.19.605.2.zip
  5. Wait for the process to finish
  6. Reboot the phone:
    fastboot reboot

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  2. Download recovery — you can directly download a recovery image using the link below, or visit twrp.me to obtain the latest version of Team Win Recovery Project for your device.
    Recovery: Download
    md5: e90d6549d7bc39b2f17c17ff4324cd64
  3. Connect the Droid Incredible 4G LTE to the computer via USB.
  4. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  5. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  6. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  7. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  8. Once the flash completes successfully, reboot the device into recovery to verify the installation. Boot to recovery instructions: With the device powered down, hold the Volume Down and Power buttons until HBOOT appears, then release the buttons. Navigate using the volume keys and select RECOVERY using the Power key.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • With the device powered down, hold the Volume Down and Power buttons until HBOOT appears, then release the buttons. Navigate using the volume keys and select RECOVERY using the Power key.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For HTC Droid Incredible 4G LTE (fireball)

Introduction

These instructions will hopefully assist you to start with a stock Droid Incredible 4G LTE, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Droid Incredible 4G LTE
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Droid Incredible 4G LTE (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast fireball

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast fireball

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Droid Incredible 4G LTE is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/fireball directory (you can cd ~/android/system/device/htc/fireball if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch fireball

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make fireball should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/fireball/cm_fireball-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-fireball.zip, which is the CyanogenMod installation package.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  1. Connect the Droid Incredible 4G LTE to the computer via USB.
  2. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  3. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  4. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  5. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  6. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-fireball.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC

HTC myTouch 3G Slide (espresso)

HTC myTouch 3G Slide ("espresso") Cyanogenmod

Cyanogenmod ROM HTC myTouch 3G Slide (espresso)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Vol Down & Power then select recovery

Source code

Device http://www.github.com/cyanogenmod/android_device_htc_espresso
myTouch 3G Slide Specifications
Codename: espresso
Vendor: HTC
Manufacturer: HTC
Release date: 2010 June 2 (USA)
Type: phone (slider)
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE
900 1700 2100 MHz UMTS/HSPA
Platform: Qualcomm MSM7227
CPU: 600 MHz single-core Qualcomm
RAM: 512MB
Weight: 167 g (5.9 oz)
Dimensions: 114 mm (4.5 in) (h}
58 in (2.3 in) (w)
15 mm (0.6 in)
Screen size: 86 mm (3.4 in)
Resolution: 480×320
Screen density: 170 ppi
Screen type: TFT LCD
Internal storage: 512MB
SD Card: up to 32GB
Bluetooth: 2.1+EDR
Wi-Fi: 802.11b/g
Main camera: 5MP w/ LED flash
Power: 1300 mAh internal, rechargeable, removable lithium-ion battery
Peripherals: A-GPS, capacitive touchscreen, volume controls, proximity and ambient light sensors, 3-axis accelerometer, physical keyboard
CM supported: 7
Latest CM version: gingerbread

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Rooting & Installing a Custom Recovery on the myTouch Slide

If the TMobile myTouch Slide is already rooted and has a custom recovery image skip this section.

  1. In order to go through this process, you will need to create a goldcard.
  2. You will need ADB on the computer to root the TMobile myTouch Slide. Follow the Android SDK guide, to get the ADB shell on the computer.
  3. Download rageagainstthecage-arm5, flash_image, Engineering Recovery image, the ClockworkMod Recovery 2.5.0.7 update.zip & the 1.27.531.1 firmware:
    • rageagainstthecage-arm5: Download
      md5: bfa28d457b54508326ab55d11399c586
    • flash_image: Download
      md5: bd475f29e0665c702f8eaf57a0423b58
    • Engineering Recovery image: Download
      md5: 14d4b30fb47225d7baabe7fe95386927
    • the ClockworkMod Recovery 2.5.0.7 update.zip: Download
      md5: f18d1de25c35a3d50dd578a46c3f633d
    • 1.27.531.1 firmware: Download
      md5: 9e80d53b4afa73ecf0d58f703831ac82
  4. Unzip rageagainstthecage-arm5, flash_image, & the Engineering Recovery image to the same folder as ADB (the /platform-tools folder within the Android SDK folder).
  5. With the Goldcard inserted in the TMobile myTouch Slide, rename the ClockworkMod Recovery update.zip to simply “update.zip” and copy it with the 1.27.531.1 firmware to the root of the SD card (NOT in any folders).
  6. On the TMobile myTouch Slide we have to set several settings for this process to go smooth;
  7. Connect the TMobile myTouch Slide to the computer via USB.
  8. On the computer, open terminal and run the following commands:
    adb push rageagainstthecage-arm5.bin /data/local/tmp/
    adb shell
    chmod 755 /data/local/tmp/rageagainstthecage-arm5.bin
    /data/local/tmp/rageagainstthecage-arm5.bin
  9. Once the exploit finishes, in terminal, run the following commands:
    exit
    adb kill-server
    adb start-server
    adb push flash_image /data/local/
    adb push recovery-engineering-espresso.img /data/local/mtd0.img
    adb shell
    cd /data/local
    chmod 04755 *
    /data/local/flash_image misc /data/local/mtd0.img
  10. Once complete, power off the TMobile myTouch Slide.
  11. Hold the Volume Down button while powering on until the device is in bootloader mode.
  12. After a minute or so, the device will prompt to see if you want to run the update. Press the Volume Up button to accept & apply the update.
    NOTE: The update will take a while to apply, just wait.
    NOTE: If you get an error stating the update is older than version on the phone, there is an issue with the Goldcard you created.
  13. Once the device is finished applying the update, it will ask you to reboot. DON’T reboot the device & press the Volume Down button to tell the device not to.
  14. Back at the bootloader menu, use Volume Down to highlight Recovery and press the Power button to boot into the recovery.
  15. Once in the recovery, you will see a device with a triangle. Press Volume Up & the Power button.
  16. Use the Volume Down button to highlight Apply update.zip & press the Power button to select this.
  17. After a moment, the TMobile myTouch Slide will boot into the ClockworkMod Recovery.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Vol Down & Power
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

How To Build CyanogenMod For HTC myTouch 3G Slide (espresso)

Introduction

These instructions will hopefully assist you to start with a stock myTouch 3G Slide, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A myTouch 3G Slide
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the myTouch 3G Slide (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_espresso-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_espresso-userdebug

or

$ lunch full_espresso-userdebug

If all goes well, you should see that espresso-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your myTouch 3G Slide is connected to your computer via the USB cable and that you are in the ~/android/system/device/htc/espresso directory (you can cd ~/android/system/device/htc/espresso if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/htc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/htc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch espresso

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make espresso should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/espresso/cm_espresso-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-espresso.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-espresso.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories HTC