LG Optimus LTE (SK Telecom) (su640)

LG Optimus LTE (SK Telecom) ("su640") Cyanogenmod

Cyanogenmod ROM LG Optimus LTE (SK Telecom) (su640)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_su640
Kernel http://www.github.com/cyanogenmod/lge-kernel-iproj
Optimus LTE (SK Telecom) Specifications
Codename: su640
Vendor: LG
Manufacturer: LG
Type: phone
GSM freq: HSDPA 2100
CDMA freq: CDMA 800 / 1900
LTE freq: LTE 800
Platform: Qualcomm MSM8660
CPU: 1.5 GHz dual-core Scorpion Snapdragon
GPU: Adreno 220
RAM: 1GB
Weight: 135 g (4.76 oz)
Dimensions: 132.9 x 67.9 x 10.4 mm (5.23 x 2.67 x 0.41 in)
Screen size: 114 mm (4.5 in)
Resolution: 720×1280
Screen density: 326 ppi
Internal storage: 4GB
SD Card: up to 32GB
Bluetooth: 3.0
Wi-Fi: 802.11 a/b/g/n, dual-band
Main camera: 8MP
Secondary camera: 1.3MP
Power: Li-Ion 1830 mAh battery
Peripherals: Accelerometer, gyro, proximity, compass
CM supported: 9, 10, 10.1

How to Install CyanogenMod on the LG Optimus LTE (SK Telecom) (su640)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG Optimus LTE (SK Telecom) (su640)

Introduction

These instructions will hopefully assist you to start with a stock Optimus LTE (SK Telecom), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Optimus LTE (SK Telecom)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Optimus LTE (SK Telecom) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast su640

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast su640

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Optimus LTE (SK Telecom) is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/su640 directory (you can cd ~/android/system/device/lge/su640 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch su640

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make su640 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/su640/cm_su640-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-su640.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-su640.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG Thrill 4G (p925)

LG Thrill 4G ("p925") Cyanogenmod

Cyanogenmod ROM LG Thrill 4G (p925)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

The LG Thrill 4G is the US version of the LG Optimus 3D. Both phones share the same hardware, and as a result, CM10 Optimus 3D ROMs may be installed. Please see the LG Optimus 3D page for information on installation.

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_p925
Thrill 4G Specifications
Codename: p925
Vendor: LG
Type: phone
Platform: TI OMAP4430
CPU: 1 GHz dual-core Cortex A9
RAM: 512MB
Screen size: 109 mm (4.3 in)
Resolution: 480×800
Screen density: 217 ppi
Screen type: TFT LCD
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the LG Thrill 4G (p925)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The LG Thrill 4G is the US version of the LG Optimus 3D. Both phones share the same hardware, and as a result, CM10 Optimus 3D ROMs may be installed. Please see the LG Optimus 3D page for information on installation.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG Thrill 4G (p925)

Introduction

These instructions will hopefully assist you to start with a stock Thrill 4G, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Thrill 4G
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Thrill 4G (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_p925-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_p925-userdebug

or

$ lunch full_p925-userdebug

If all goes well, you should see that p925-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Thrill 4G is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/p925 directory (you can cd ~/android/system/device/lge/p925 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch p925

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make p925 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/p925/cm_p925-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-p925.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-p925.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG Optimus One (p500)

LG Optimus One ("p500") Cyanogenmod

Cyanogenmod ROM LG Optimus One (p500)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Volume Down + Power + Home
  • Fastboot: Power + Home

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_p500
Optimus One Specifications
Codename: p500
Also known as: LG-P500/LG Optimus One
Vendor: LG
Manufacturer: LG
Release date: October 2010
Carrier: Vodafone
Type: phone
GSM freq: 850 900 1800 1900 2100 MHz UMTS/HSPA+
Platform: Qualcomm MSM7227
CPU: 600 MHz single-core Snapdragon (ARMv6)
GPU: Qualcomm Adreno 200
RAM: 512MB
Weight: 129 g (4.55 oz)
Dimensions: 113.5 mm (4.47 in) (h)
59 mm (2.32 in) (w)
13.3 mm (0.52 in) (d)
Screen size: 81 mm (3.2 in)
Resolution: 320×480
Screen density: 160 PPI
Internal storage: 190MB
SD Card: up to 32GB
Bluetooth: 2.1
Wi-Fi: 802.11 b/g
Main camera: 3.2MP
Power: 1500 mAh
Peripherals: accelerometer, proximity, compass
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the LG Optimus One (p500)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Volume Down + Power + Home
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

Before you start

  1. Backup all your data as this will wipe everything on your phone
  2. Make sure your battery is fully charged
  3. This can take as little as 30 minutes and as long as 3 hours

Installing Recovery Mode

On a rooted device

  1. Go to Google Play Store
  2. Install “ClockworkMod ROM Manager”
  3. Follow instructions when you open it
  4. Confirm your model and select Clockwork Recovery mode
  5. Wait for download to complete
  6. It’ll flash your device with the ROM manager

Rooting

It is easy to root this device, so root the device before trying to install cyanogenmod.

Use SuperOneClick :
http://forum.xda-developers.com/showthread.php?t=803682

First:

  1. Settings > SD Card and Storage: make sure “Mass Storage” in unchecked
  2. Settings > Applications > Developers Tools: check USB Debugging
  3. You will need to have the LG USB driver installed on your computer

More on Recovery Mode Install

In some cases (encountered at least with LG P500 with Android 2.2.1 and 2.3.3), the current (2014) ROM Manager does not install the ClockworkMod Recovery image correctly. The manager does not report any error, however, on attempt to boot ClockworkMod Recovery, stock recovery is displayed and factory reset takes place afterwards (behavior described e.g. here http://androidforums.com/optimus-one-all-things-root/465761-clockwork-mod-reboot-into-recovery-factory-resets-phone.html). This issue can be fixed using the LGMDP tool (process described here http://forum.xda-developers.com/showthread.php?t=1318750), it might also be necessary to try multiple versions of the ClockworkMod Recovery images. (Note: use the MENU button (on the left) to select in this recovery.)

Another issue to pay attention to is the phone baseband version (especially if the installed CyanogenMod image does not connect to the mobile network at all).

Accessing Recovery Mode

  1. Power off phone
  2. Press and hold VOLUME DOWN + HOME + Power until you see LG Logo

Troubleshooting

VOLUME DOWN + HOME + POWER just resets the phone

If you enter the key combination and you see a white box, yellow arrow and a green droid, this means that you have not installed ClockworkMod Recovery mode. Install ClockworkMod Recovery mode and try again

Backup failed ‘error while making a backup image of /sdcard/.android_secure

If you see an error running a backup of your phone and it says ‘error while making a backup image of [ insert folder name here ]’, you do not have enough free space on your sd card. Free up space on your SD card and try again

Here is a page that talks about => .android_secure

  1. Go back into recovery mode
  2. Wipe/factory reset your phone
  3. Reinstall the Cyanogenmod image

I don’t have Android Market/Google Play Store anymore

To get Google Play Store, you must install Google Apps. Download the ZIP file to your sd card, reboot into Recovery Mode and install the ZIP. It’ll add Google Play Store to your install. This also installs GMail and some other basic Google apps.

How To Build CyanogenMod For LG Optimus One (p500)

Introduction

These instructions will hopefully assist you to start with a stock Optimus One, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Optimus One
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Optimus One (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_p500-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_p500-userdebug

or

$ lunch full_p500-userdebug

If all goes well, you should see that p500-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Optimus One is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/p500 directory (you can cd ~/android/system/device/lge/p500 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch p500

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make p500 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/p500/cm_p500-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-p500.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-p500.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG Optimus Sol (e730)

LG Optimus Sol ("e730") Cyanogenmod

Cyanogenmod ROM LG Optimus Sol (e730)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the ics branch of CyanogenMod.

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_e730
Kernel http://www.github.com/cyanogenmod/android_kernel_lge_e730
Optimus Sol Specifications
Codename: e730
Vendor: LG
Manufacturer: LG
Type: phone
GSM freq: GSM 850 / 900 / 1800 / 1900
HSDPA 900 / 2100
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Scorpion Snapdragon
GPU: Adreno 205
RAM: 512MB
Weight: 110 g (3.88 oz)
Dimensions: 122.5 x 62.5 x 9.8 mm (4.82 x 2.46 x 0.39 in)
Screen size: 97 mm (3.8 in)
Resolution: 480×800
Screen density: 246 ppi
Internal storage: 1GB
SD Card: up to 32GB
Bluetooth: 3.0
Wi-Fi: 802.11 b/g/n
Main camera: 5MP
Secondary camera: VGA
Power: Li-Ion 1500 mAh battery
Peripherals: Accelerometer, proximity, compass
CM supported: 7, 9
Latest CM version: ics

How to Install CyanogenMod on the LG Optimus Sol (e730)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How to root your phone

Required software:

– LG USB-driver (you can get the driver for your e730 on the lg website)

– SuperOneClick (Software for rooting your device. This instruction has been tested with version 2.3.3)

1. Download the required software

2. Install LG USB-driver on your pc

3. You have to enable following settings in your phone

Settings >> Applications >> Unknown sources

Settings >> Applications >> Development >> USB-Debugging

4. Connect your phone via USB to your pc. Your pc should start the driver installation automatically. Wait until the installation is finished.

5. Start “SuperOneClick.exe”. If you have downloaded a zip.-file, unzip it in a new folder first.

6. Important: If you use a firewall on your pc, your firewall has to accept the access from “adb.exe”.

7. Accept the disclaimer and choose “root” (it is the upper left button).

8. Root-process starts. Wait until it is finished. When finished, your phone should restart and you will find the app “super-user” on your phone.

Origin of this instruction (it is in german language)

How to install ClockWorkMod-Recovery

Important: You need internet access on your phone. Some data will be downloaded during installation.

1. Install the App “RomManager” (free version is sufficient) on your phone.

2. Start the app and jump the registration and advertisement until you get to the main page.

3. Click “Install ClockWorkMod Recovery”

4. Look for your phone (Optimus Sol) in the next menu and click “OK”. Follow the installation instructions. During this process there will be a super-user request by the RomManager. You have to allow this request.

5. After successful installation you will find on the main page of this app (RomManager) the current installed version of CWM-Recovery.

Origin of this instruction (it is in german language)

How to start in CWM-Recovery

You can choose between these two possibilities:


Variant 1:

Start the app “RomManager” and choose the entry “Restart into recovery”.


Variant 2:

Switch off your phone and start by pressing the Volume-down AND Power-button. Keep them pressed until you see the CWM-Recovery.

To navigate in recovery-menu:

Down: Volume down (-)

Up: Volume up (+)

Confirm/Select: Power-button

How to install Cyanogenmod

Important: Your phone should be fully charged!

Installing CM for the first time:

1. Download CyanogenMod and copy the zip.file to the sd-card of your phone (/sdcard).

2. Execute the following steps consecutively:

Start the optimus sol in CWM-recovery-mode

Select Backup and restore > Backup (safe your system)

Select wipe data/factory reset (confirm with Yes)

Select wipe cache partition (confirm with Yes)

Select advanced

Select Wipe Dalvik Cache (confirm with Yes)

Select Wipe Battery Stats (confirm with Yes)

Select ++++Go Back+++++++

Select install zip from sdcard

Select choose zip frome sdcard

Select your downloaded version of cyanogenmod and confirm your choice with “***YES***”. The installation starts.

Select +++++Go Back+++++

Select reboot system now

3. Finished

Update-Installation:

With an update-installation all user data and apps are kept.

1. Download CyanogenMod and copy the zip.file to the sd-card of your phone (/sdcard).

2. Execute the following steps consecutively:

Start the optimus sol in CWM-recovery-mode

Select Backup and restore > Backup (safe your system)

Select advanced

Select Wipe Dalvik Cache (confirm with Yes)

Select Wipe Battery Stats (confirm with Yes)

Select ++++Go Back+++++++

Select install zip from sdcard

Select choose zip frome sdcard

Select your downloaded version of cyanogenmod and confirm your choice with “***YES***”. The installation starts.

Select +++++Go Back+++++

Select reboot system now

3. Finished

Origin of this instruction (it is in german language)

How To Build CyanogenMod For LG Optimus Sol (e730)

Introduction

These instructions will hopefully assist you to start with a stock Optimus Sol, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Optimus Sol
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Optimus Sol (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b ics

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast e730

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast e730

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Optimus Sol is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/e730 directory (you can cd ~/android/system/device/lge/e730 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch e730

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make e730 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/e730/cm_e730-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-9-20161224-UNOFFICIAL-e730.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-9-20161224-UNOFFICIAL-e730.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG Optimus Hub (e510)

LG Optimus Hub ("e510") Cyanogenmod

Cyanogenmod ROM LG Optimus Hub (e510)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_e510
Optimus Hub Specifications
Codename: e510
Vendor: LG
Manufacturer: LG
Type: phone
GSM freq: GSM 850 / 900 / 1800 / 1900
HSDPA 900 / 2100
Platform: Qualcomm MSM7227T
CPU: 800 MHz single-core ARM v6
GPU: Adreno 200
RAM: 512MB
Weight: 123 g (4.34 oz)
Dimensions: 113.4 x 60.8 x 11.9 mm (4.46 x 2.39 x 0.47 in)
Screen size: 89 mm (3.5 in)
Resolution: 320×480
Screen density: 165 ppi
Internal storage: 150MB
SD Card: up to 32GB
Bluetooth: 3.0
Wi-Fi: 802.11 b/g/n
Main camera: 5MP
Power: Li-Ion 1500 mAh battery
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the LG Optimus Hub (e510)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG Optimus Hub (e510)

Introduction

These instructions will hopefully assist you to start with a stock Optimus Hub, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Optimus Hub
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Optimus Hub (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_e510-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_e510-userdebug

or

$ lunch full_e510-userdebug

If all goes well, you should see that e510-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Optimus Hub is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/e510 directory (you can cd ~/android/system/device/lge/e510 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch e510

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make e510 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/e510/cm_e510-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-e510.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-e510.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG Optimus Pro (c660)

LG Optimus Pro ("c660") Cyanogenmod

Cyanogenmod ROM LG Optimus Pro (c660)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Volume Down + Power + Home
  • Fastboot: Power + Home

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_c660
Optimus Pro Specifications
Codename: c660
Also known as: Optimus Pro
Vendor: LG
Manufacturer: lge
Release date: 2011 September (USA)
Carrier: Vodafone
Type: phone
GSM freq: GSM 850 / 900 / 1800 / 1900
HSDPA 900 / 2100
Platform: Qualcomm MSM7227T
CPU: 800 MHz single-core ARM 11
GPU: Adreno 200
RAM: 256MB
Weight: 129 g (4.55 oz)
Dimensions: 119.5 mm (4.70 in) (h)
59.7 mm (2.35 in) (w)
12.9 mm (0.51 in) (d)
Screen size: 71 mm (2.8 in)
Resolution: 240×320
Screen density: 143 ppi
Internal storage: 150MB
SD Card: up to 32GB
Bluetooth: 3.0
Wi-Fi: 802.11 b/g/n
Main camera: 3.15MP
Power: Li-Ion 1500 mAh battery
Peripherals: accelerometer, proximity, compass
CM supported: 7
Latest CM version: gingerbread

How To Build CyanogenMod For LG Optimus Pro (c660)

Introduction

These instructions will hopefully assist you to start with a stock Optimus Pro, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Optimus Pro
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Optimus Pro (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_c660-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_c660-userdebug

or

$ lunch full_c660-userdebug

If all goes well, you should see that c660-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Optimus Pro is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/c660 directory (you can cd ~/android/system/device/lge/c660 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch c660

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make c660 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/c660/cm_c660-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-c660.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-c660.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG V10 (T-Mobile) (h901)

CyanogenMod ROM LG V10 T-Mobile (H901)

CyanogenMod ROM LG V10 T-Mobile (h901)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 12.1 (Android 5.1 (Lollipop))

Special boot modes

  • Recovery: Hold Volume Down & Power till LG logo appears, then release Power for 1 sec and hold it again till recovery comes up
  • Bootloader: Volume Up & Power
  • Fastboot: Volume Up & Power

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_h901
Kernel http://www.github.com/cyanogenmod/android_kernel_lge_pplus
V10 (T-Mobile) Specifications
Codename: h901
Vendor: LG
Release date: November 2015
Type: phone
GSM freq: GSM850, GSM900, GSM1800, GSM1900, UMTS850 (B5), UMTS1700/2100 (B4), UMTS1900 (B2), UMTS2100 (B1)
LTE freq: LTE850 (B5), LTE1700/2100 (B4), LTE2600 (B7), LTE1800 (B3), LTE1900 (B2), LTE700 (B12)
Platform: Qualcomm MSM8992
CPU: 1.44 GHz & 1.82 GHz hexa-core Cortex-A53 & Cortex-A57
GPU: Adreno 418
RAM: 4GB
Weight: 192 g (6.77 oz)
Dimensions: 159.6 x 79.3 x 8.6 mm (6.28 x 3.12 x 0.34 in)
Screen size: 145 mm (5.7 in)
Resolution: 1440×2560
Screen density: 515 ppi
Screen type: IPS LCD
Internal storage: 64GB
SD Card: up to 2TB
Bluetooth: 4.1
Wi-Fi: 802.11 a/b/g/n/ac
Main camera: 16MP, flash: LED
Secondary camera: 8MP
Power: 3000 mAh
Peripherals: Accelerometer, Gyro, Proximity, Compass, Barometer, Color spectrum, FM Radio
CM supported: 12.1

How to Install CyanogenMod on the LG V10 (T-Mobile) (h901)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  2. Download recovery — visit twrp.me to obtain the latest version of Team Win Recovery Project for your device.
  3. Connect the V10 (T-Mobile) to the computer via USB.
  4. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  5. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  6. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  7. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  8. Once the flash completes successfully, reboot the device into recovery to verify the installation. Boot to recovery instructions: Hold Volume Down & Power till LG logo appears, then release Power for 1 sec and hold it again till recovery comes up
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • Hold Volume Down & Power till LG logo appears, then release Power for 1 sec and hold it again till recovery comes up
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG V10 (T-Mobile) (h901)

Introduction

These instructions will hopefully assist you to start with a stock V10 (T-Mobile), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A V10 (T-Mobile)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the V10 (T-Mobile) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast h901

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast h901

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your V10 (T-Mobile) is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/h901 directory (you can cd ~/android/system/device/lge/h901 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch h901

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make h901 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/h901/cm_h901-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-h901.zip, which is the CyanogenMod installation package.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  1. Connect the V10 (T-Mobile) to the computer via USB.
  2. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  3. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  4. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  5. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  6. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-h901.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG G2x (p999)

CyanogenMod ROM LG G2x (p999)

CyanogenMod ROM LG G2x (p999)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 7 (Android 2.3 (Gingerbread))

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Special boot modes

  • Recovery: Volume Down & Power

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_p999
G2x Specifications
Codename: p999
Also known as: star
Vendor: LG
Manufacturer: lg
Carrier: T-Mobile (USA)
Type: phone
Platform: NVIDIA Tegra 2
CPU: 1 GHz dual-core NVIDIA Tegra 2
RAM: 512MB
Screen size: 102 mm (4.0 in)
Resolution: 800×480
Screen density: 233 ppi
Screen type: LCD
Internal storage: 8GB
SD Card: up to 32GB
Wi-Fi: 802.11 a/b/g/n
Main camera: 8MP
Secondary camera: 1.3MP
CM supported: 7
Latest CM version: gingerbread

How to Install CyanogenMod on the LG G2x (p999)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • Volume Down & Power
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG G2x (p999)

Introduction

These instructions will hopefully assist you to start with a stock G2x, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A G2x
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the G2x (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_p999-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_p999-userdebug

or

$ lunch full_p999-userdebug

If all goes well, you should see that p999-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your G2x is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/p999 directory (you can cd ~/android/system/device/lge/p999 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch p999

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make p999 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/p999/cm_p999-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-p999.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-p999.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG

LG MyTouch Q (c800)

CyanogenMod ROM LG MyTouch Q (c800)

CyanogenMod ROM LG MyTouch Q (c800)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 9 (Android 4.0.4 (Ice Cream Sandwich))

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the ics branch of CyanogenMod.

Source code

Device http://www.github.com/cyanogenmod/android_device_lge_c800
Kernel http://www.github.com/cyanogenmod/lge-kernel-msm7x30
MyTouch Q Specifications
Codename: c800
Vendor: LG
Manufacturer: LG
Type: phone (slider)
GSM freq: GSM 850 / 900 / 1800 / 1900
HSDPA 1700 / 2100
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Scorpion Snapdragon S2
GPU: Adreno 205
RAM: 512MB
Weight: 160 g (5.64 oz)
Dimensions: 121 x 64 x 13 mm (4.76 x 2.52 x 0.51 in)
Screen size: 89 mm (3.5 in)
Resolution: 320×480
Screen density: 165 ppi
Internal storage: 2GB
SD Card: up to 32GB
Bluetooth: 3.0
Wi-Fi: 802.11 b/g/n
Main camera: 5MP
Power: Li-Ion 1500 mAh battery
Peripherals: Accelerometer, proximity
CM supported: 9
Latest CM version: ics

How to Install CyanogenMod on the LG MyTouch Q (c800)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  2. Download recovery — you can directly download a recovery image using the link below, or visit twrp.me to obtain the latest version of Team Win Recovery Project for your device.
    Recovery: Download
    md5: b8d15a0ee9486f0a9662dd5747c50c43
  3. Connect the MyTouch Q to the computer via USB.
  4. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  5. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  6. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  7. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  8. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
  1. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  2. Optional (Recommended): Select backup and restore to create a backup.
  3. Select wipe data/factory reset.
  4. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  5. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For LG MyTouch Q (c800)

Introduction

These instructions will hopefully assist you to start with a stock MyTouch Q, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A MyTouch Q
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the MyTouch Q (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b ics

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast c800

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast c800

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your MyTouch Q is connected to your computer via the USB cable and that you are in the ~/android/system/device/lge/c800 directory (you can cd ~/android/system/device/lge/c800 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/lge directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/lge directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch c800

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make c800 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/c800/cm_c800-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-9-20161224-UNOFFICIAL-c800.zip, which is the CyanogenMod installation package.

Installing a custom recovery using fastboot

See All About Recovery Images for more information about custom recoveries and their capabilities.

  1. Make sure your computer has working fastboot and adb.
  1. Connect the MyTouch Q to the computer via USB.
  2. Make sure the fastboot binary is in your PATH or that you place the recovery image in the same directory as fastboot.
  3. Open a terminal on your PC and reboot the device into fastboot mode by typing
    adb reboot bootloader
    or by using the hardware key combination for your device while it is powered off.
  4. Once the device is in fastboot mode, verify your PC sees the device by typing
    fastboot devices
    • If you don’t see your device serial number, and instead see “<waiting for device>”, fastboot is not configured properly on your machine. See fastboot documentation for more info.
    • If you see “no permissionsfastboot”, make sure your UDEV rules are setup correctly.
  5. Flash recovery onto your device by entering the following command:
    fastboot flash recovery your_recovery_image.img
    where the latter part is the filename of the recovery image.
  6. Once the flash completes successfully, reboot the device into recovery to verify the installation.
    • Note: Some ROMs overwrite recovery at boot time so if you do not plan to immediately boot into recovery to install CyanogenMod, please be aware that this may overwrite your custom recovery with the stock one.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-9-20161224-UNOFFICIAL-c800.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Categories LG