Sony Ericsson Xperia Play (CDMA) (zeusc)

Sony Ericsson Xperia Play (CDMA) ("zeusc") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Play (CDMA) (zeusc)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the ics branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Play (CDMA) (aka zeusc) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Play (CDMA) was added in CyanogenMod 7.2.

Special boot modes

  • Fastboot:
    1. Power down device
    2. Plug data cable into PC
    3. While holding down the Search button, plug the data cable into the device

    If successful, the LED will turn blue to indicate the device is in fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_zeusc
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Play (CDMA) Specifications
Codename: zeusc
Vendor: Sony Ericsson
Release date: 2011 May 1 (UK)
Type: phone (slider)
CDMA freq: CDMA 800 1900 MHz GPRS/EDGE
1xEV-DO 2000 MHz
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 175 g (6.2 oz)
Dimensions: 119 mm (4.7 in) (h)
62 mm (2.44 in) (w)
16 mm (0.63 in) (d)
Screen size: 102 mm (4.0 in)
Resolution: 854×480 (FWVGA)
Screen type: TFT LED-LCD
Internal storage: 400MB
SD Card: up to 32GB
Bluetooth: Bluetooth 2.1+EDR w/A2DP
Wi-Fi: 802.11b/g/n
Main camera: 5.1 megapixel with LED flash
Secondary camera: 0.3 megapixel
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNLA, microHDMI, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass, touchpad, PSP-esq buttons
CM supported: 7, 9
Latest CM version: ics

How to Install CyanogenMod on the Sony Ericsson Xperia Play (CDMA) (zeusc)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Play (CDMA) (aka zeusc) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Play (CDMA) was added in CyanogenMod 7.2.

Unlock your Xperia Play (CDMA)

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Play (CDMA) is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Play (CDMA) you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Play (CDMA) and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
      1. Power down device
      2. Plug data cable into PC
      3. While holding down the Search button, plug the data cable into the device

      If successful, the LED will turn blue to indicate the device is in fastboot mode.

  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Play (CDMA)’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    1. Power down device
    2. Plug data cable into PC
    3. While holding down the Search button, plug the data cable into the device

    If successful, the LED will turn blue to indicate the device is in fastboot mode.

  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Play (CDMA) (zeusc)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Play (CDMA), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Play (CDMA)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Play (CDMA) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b ics

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast zeusc

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast zeusc

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Play (CDMA) is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/zeusc directory (you can cd ~/android/system/device/semc/zeusc if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch zeusc

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make zeusc should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/zeusc/cm_zeusc-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-9-20161224-UNOFFICIAL-zeusc.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-9-20161224-UNOFFICIAL-zeusc.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Play (GSM) (zeus)

Sony Ericsson Xperia Play (GSM) ("zeus") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Play (GSM) (zeus)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the ics branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Play (GSM) (aka zeus) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Play (GSM) was added in CyanogenMod 7.1.

Special boot modes

  • Fastboot:
    1. Power down device
    2. Plug data cable into PC
    3. While holding down the Search button, plug the data cable into the device

    If successful, the LED will turn blue to indicate the device is in fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_zeus
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Play (GSM) Specifications
Codename: zeus
Vendor: Sony Ericsson
Release date: 2011 May 1 (UK)
Type: phone (slider)
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
Quad-band 800 850 1900 2100 MHz HSPA/WCDMA (Canada)
Dual-band 900 2100 MHz HSPA/WCDMA (Europe)
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 175 g (6.2 oz)
Dimensions: 119 mm (4.7 in) (h)
62 mm (2.44 in) (w)
16 mm (0.63 in) (d)
Screen size: 102 mm (4.0 in)
Resolution: 854×480 (FWVGA)
Screen type: TFT LED-LCD
Internal storage: 400MB
SD Card: up to 32GB
Bluetooth: Bluetooth 2.1+EDR w/A2DP
Wi-Fi: 802.11b/g/n
Main camera: 5.1 megapixel with LED flash
Secondary camera: 0.3 megapixel
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNLA, microHDMI, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass, touchpad, PSP-esq buttons
CM supported: 7, 9
Latest CM version: ics

How to Install CyanogenMod on the Sony Ericsson Xperia Play (GSM) (zeus)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Play (GSM) (aka zeus) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Play (GSM) was added in CyanogenMod 7.1.

Unlock your Xperia Play (GSM)

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Play (GSM) is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Play (GSM) you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Play (GSM) and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
      1. Power down device
      2. Plug data cable into PC
      3. While holding down the Search button, plug the data cable into the device

      If successful, the LED will turn blue to indicate the device is in fastboot mode.

  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Play (GSM)’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    1. Power down device
    2. Plug data cable into PC
    3. While holding down the Search button, plug the data cable into the device

    If successful, the LED will turn blue to indicate the device is in fastboot mode.

  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Play (GSM) (zeus)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Play (GSM), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Play (GSM)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Play (GSM) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b ics

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast zeus

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast zeus

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Play (GSM) is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/zeus directory (you can cd ~/android/system/device/semc/zeus if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch zeus

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make zeus should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/zeus/cm_zeus-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-9-20161224-UNOFFICIAL-zeus.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-9-20161224-UNOFFICIAL-zeus.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Ray (urushi)

Sony Ericsson Xperia Ray ("urushi") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Ray (urushi)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Ray (aka urushi) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Ray was added in CyanogenMod 7.1.

Special boot modes

  • Fastboot: Vol Up

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_urushi
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Ray Specifications
Codename: urushi
Vendor: Sony Ericsson
Release date: 2011 August 1 (UK)
Type: phone
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
CDMA freq: Tri-band 850 1900 2100 MHz HSPA/WCDMA; or
Dual-band 900 2100 MHz HSPA/WCDMA
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 100 g (3.5 oz)
Dimensions: 111 mm (4.4 in) (h)
53 mm (2.09 in) (w)
9 mm (0.37 in) (d)
Screen size: 84 mm (3.3 in)
Resolution: 854×480 (FWVGA)
Screen type: TFT LED-LCD
Internal storage: 1 GB
SD Card: supports up to 32 GB
Bluetooth: Bluetooth 2.1+EDR with A2DP
Wi-Fi: 802.11b/g/n
Main camera: 8.1 megapixel with LED flash
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNLA, microHDMI, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7, 9, 10
Latest CM version: jellybean

How to Install CyanogenMod on the Sony Ericsson Xperia Ray (urushi)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Ray (aka urushi) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Ray was added in CyanogenMod 7.1.

Unlock your Xperia Ray

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Ray is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Ray you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Ray and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
    • Vol Up
  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Ray’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    Vol Up
  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Ray (urushi)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Ray, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Ray
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Ray (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast urushi

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast urushi

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Ray is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/urushi directory (you can cd ~/android/system/device/semc/urushi if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch urushi

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make urushi should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/urushi/cm_urushi-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-urushi.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-urushi.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Mini (smultron)

Sony Ericsson Xperia Mini ("smultron") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Mini (smultron)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Mini (aka smultron) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Mini was added in CyanogenMod 7.

Special boot modes

  • Fastboot: Vol Up

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_smultron
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Mini Specifications
Codename: smultron
Vendor: Sony Ericsson
Release date: August 2011 (UK)
Type: phone
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
CDMA freq: Tri-band 800 1900 2100 MHz HSPA/WCDMA; or
Dual-band 900 2100 MHz HSPA/WCDMA
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S1
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 99 g (3.5 oz)
Dimensions: 88 mm (3.5 in) (h)
52 mm (2.05 in) (w)
16 mm (0.63 in) (d)
Screen size: 76 mm (3.0 in)
Resolution: 480×320 (HVGA)
Screen type: TFT LCD
Internal storage: 1 GB
SD Card: up to 32 GB
Bluetooth: Bluetooth 2.1+EDR with A2DP
Wi-Fi: WiFi (802.11b/g/n)
Main camera: 5 megapixel with LED flash
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNL, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7, 9, 10
Latest CM version: jellybean

How to Install CyanogenMod on the Sony Ericsson Xperia Mini (smultron)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Mini (aka smultron) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Mini was added in CyanogenMod 7.

Unlock your Xperia Mini

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Mini is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Mini you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Mini and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
    • Vol Up
  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Mini’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    Vol Up
  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Mini (smultron)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Mini, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Mini
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Mini (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast smultron

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast smultron

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Mini is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/smultron directory (you can cd ~/android/system/device/semc/smultron if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch smultron

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make smultron should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/smultron/cm_smultron-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-smultron.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-smultron.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia X8 (shakira)

Sony Ericsson Xperia X8 ("shakira") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia X8 (shakira)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

The Sony Ericsson Xperia X8 (aka shakira) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia X8 was added in CyanogenMod 7.1.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_shakira
Xperia X8 Specifications
Codename: shakira
Vendor: Sony Ericsson
Release date: 2010-09-01 UK
Type: phone
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
CDMA freq: Quad-band 850 1900 2100 MHz HSPA/WCDMA (Canada)

Dual-band 900 2100 MHz HSPA/WCDMA (EUROPE)

Platform: Qualcomm MSM7227
CPU: 600 MHz single-core Qualcomm MSM7227 processor
GPU: Qualcomm Adreno 200
RAM: 168MB
Weight: 104 g (3.7 oz)
Dimensions: 99 mm (3.9 in) (h)

54 mm (2.1 in) (w)
15 mm (0.591 in) (d)

Screen size: 76 mm (3.0 in)
Resolution: 320×480 (HVGA)
Screen type: TFT LCD
Internal storage: 128MB flash
SD Card: up to 16GB
Bluetooth: Bluetooth 2.1+EDR with A2DP
Wi-Fi: 802.11b/g
Main camera: 3.15 Megapixel
Power: 1200 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB,AGPS, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

How To Build CyanogenMod For Sony Ericsson Xperia X8 (shakira)

Introduction

These instructions will hopefully assist you to start with a stock Xperia X8, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia X8
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia X8 (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_shakira-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_shakira-userdebug

or

$ lunch full_shakira-userdebug

If all goes well, you should see that shakira-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia X8 is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/shakira directory (you can cd ~/android/system/device/semc/shakira if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch shakira

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make shakira should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/shakira/cm_shakira-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-shakira.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-shakira.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Active (satsuma)

Sony Ericsson Xperia Active ("satsuma") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Active (satsuma)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Active (aka satsuma) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Active was added in CyanogenMod 7

Special boot modes

  • Fastboot: With the device powered down, hold Volume Up and connect the USB cable. The notification light should turn blue to indicate you are in fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_satsuma
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Active Specifications
Codename: satsuma
Vendor: Sony Ericsson
Release date: 2011 October
Type: phone
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
CDMA freq: Tri-band 800 1900 2100 MHz HSPA/WCDMA
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 110 g (3.9 oz)
Dimensions: 92 mm (3.62 in) (h)
55 mm (2.2 in) (w)
17 mm (0.669 in) (d)
Screen size: 76 mm (3.0 in)
Resolution: 320×480 (HVGA)
Screen density: LED LCD
SD Card: up to 32GB
Bluetooth: Bluetooth 2.1+EDR w/A2DP
Wi-Fi: 802.11b/g/n
Main camera: 5 megapixel w/LED flash
Power: 1200 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: AGPS, microUSB, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7, 9, 10
Latest CM version: jellybean

How to Install CyanogenMod on the Sony Ericsson Xperia Active (satsuma)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Active (aka satsuma) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Active was added in CyanogenMod 7

Unlock your Xperia Active

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Active is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Active you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Active and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
    • With the device powered down, hold Volume Up and connect the USB cable. The notification light should turn blue to indicate you are in fastboot mode.
  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Active’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    With the device powered down, hold Volume Up and connect the USB cable. The notification light should turn blue to indicate you are in fastboot mode.
  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Active (satsuma)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Active, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Active
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Active (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast satsuma

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast satsuma

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Active is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/satsuma directory (you can cd ~/android/system/device/semc/satsuma if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch satsuma

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make satsuma should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/satsuma/cm_satsuma-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-satsuma.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-satsuma.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia X10 Mini (robyn)

Sony Ericsson Xperia X10 Mini ("robyn") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia X10 Mini (robyn)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

The Sony Ericsson Xperia X10 Mini (aka robyn) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia X10 Mini was added in CyanogenMod 7.1.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_robyn
Xperia X10 Mini Specifications
Codename: robyn
Vendor: Sony Ericsson
Release date: 2010 May
Type: phone
GSM freq: Quad-band GSM 850 900 1800 1900 MHz GPRS/EDGE
CDMA freq: Tri-band 800 1900 2100 MHz HSPA/WCDMA
Platform: Qualcomm MSM7227
CPU: 600 MHz single-core Qualcomm MSM7227 Processor
GPU: Qualcomm Adreno 200
RAM: 128MB
Weight: 88 g (3.1 oz)
Dimensions: 83 mm (3.27 in) (h)

50 mm (1.9 in) (w)
16 mm (0.63 in) (d)

Screen size: 65 mm (2.6 in)
Resolution: 320×480 (HVGA)
Screen type: TFT LCD
SD Card: supports up to 16 GB
Bluetooth: Bluetooth 2.0+EDR with A2DP
Wi-Fi: Wi-Fi (802.11b/g)
Main camera: 5 megapixel with LED Flash
Power: 950 mAh internal rechargeable removable lithium polymer battery
Peripherals: microUSB, A-GPS, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

How To Build CyanogenMod For Sony Ericsson Xperia X10 Mini (robyn)

Introduction

These instructions will hopefully assist you to start with a stock Xperia X10 Mini, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia X10 Mini
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia X10 Mini (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_robyn-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_robyn-userdebug

or

$ lunch full_robyn-userdebug

If all goes well, you should see that robyn-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia X10 Mini is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/robyn directory (you can cd ~/android/system/device/semc/robyn if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch robyn

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make robyn should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/robyn/cm_robyn-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-robyn.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-robyn.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia X10 Mini Pro (mimmi)

Sony Ericsson Xperia X10 Mini Pro ("mimmi") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia X10 Mini Pro (mimmi)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the gingerbread branch of CyanogenMod.

Notes

The Sony Ericsson Xperia X10 Mini Pro (aka mimmi) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia X10 Mini Pro was added in CyanogenMod 7.1.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_mimmi
Xperia X10 Mini Pro Specifications
Codename: mimmi
Vendor: Sony Ericsson
Release date: 2010 June
Type: phone (slider)
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE

900 2100 MHz UMTS/HSPA (EUROPE)
850 1900 2100 MHz UMTS/HSPA (CANADA)

Platform: Qualcomm MSM7227
CPU: 600 MHz single-core
GPU: Qualcomm Adreno 200
RAM: 128MB
Weight: 120 g (4.2 oz)
Dimensions: 90 mm (3.5 in) (h)

52 mm (2.05 in) (w)
17 mm (0.669 in) (d)

Screen size: 65 mm (2.6 in)
Resolution: 240×320 (QVGA)
Screen type: TFT LCD
SD Card: supports up to 32 GB
Bluetooth: Bluetooth 2.1+A2DP
Wi-Fi: WiFi (802.11b/g)
Main camera: 5 megapixel with LED flash
Power: 930 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass
CM supported: 7
Latest CM version: gingerbread

How To Build CyanogenMod For Sony Ericsson Xperia X10 Mini Pro (mimmi)

Introduction

These instructions will hopefully assist you to start with a stock Xperia X10 Mini Pro, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia X10 Mini Pro
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia X10 Mini Pro (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b gingerbread

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt Rom Manager

$ cd ~/android/system/vendor/cyanogen

then enter:

$ ./get-rommanager

You won’t see any confirmation- just another prompt. But this should cause the Rom Manager apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:
$ source build/envsetup.sh
$ lunch

You should see a list of devices, including something like cm_mimmi-userdebug. Select it by typing its number. It is possible that lunch does not display your device. In that case try

$ lunch cm_mimmi-userdebug

or

$ lunch full_mimmi-userdebug

If all goes well, you should see that mimmi-specific directories are downloaded automatically.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia X10 Mini Pro is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/mimmi directory (you can cd ~/android/system/device/semc/mimmi if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilt/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch mimmi

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make mimmi should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/mimmi/cm_mimmi-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-7-20161224-UNOFFICIAL-mimmi.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-7-20161224-UNOFFICIAL-mimmi.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Mini Pro (mango)

Sony Ericsson Xperia Mini Pro ("mango") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Mini Pro (mango)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Mini Pro (aka mango) is a touchscreen slider smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Mini Pro was added in CyanogenMod 7.1.

Special boot modes

  • Fastboot: Turn of the device. Connect it to the computer with the USB cable, while holding Vol Up. A blue led indicates that the device is in fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_mango
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Mini Pro Specifications
Codename: mango
Also known as: SK17i/SK17a
Vendor: Sony Ericsson
Release date: August 2011 (UK)
Type: phone (slider)
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE
800 1900 2100 MHz UMTS/HSPA (CANADA)
900 2100 MHz UMTS/HSPA (EUROPE)
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 136 g (4.8 oz)
Dimensions: 92 mm (3.6 in) (h)
53 mm (2.09 in) (w)
18 mm (0.709 in) (d)
Screen size: 76 mm (3.0 in)
Resolution: 480×320 (HVGA)
Screen density: 160PPI
Screen type: TFT LCD
Internal storage: 1 GB
SD Card: up to 32 GB
Bluetooth: Bluetooth 2.1+EDR and A2DP
Wi-Fi: 802.11b/g/n
Main camera: 5 megapixel with LED flash
Secondary camera: VGA
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNLA, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass, QWERTY keyboard
CM supported: 7, 9, 10
Latest CM version: jellybean

How to Install CyanogenMod on the Sony Ericsson Xperia Mini Pro (mango)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Mini Pro (aka mango) is a touchscreen slider smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Mini Pro was added in CyanogenMod 7.1.

Unlock your Xperia Mini Pro

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Mini Pro is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Mini Pro you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Mini Pro and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
    • Turn of the device. Connect it to the computer with the USB cable, while holding Vol Up. A blue led indicates that the device is in fastboot mode.
  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Mini Pro’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    Turn of the device. Connect it to the computer with the USB cable, while holding Vol Up. A blue led indicates that the device is in fastboot mode.
  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Mini Pro (mango)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Mini Pro, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Mini Pro
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Mini Pro (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast mango

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast mango

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Mini Pro is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/mango directory (you can cd ~/android/system/device/semc/mango if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch mango

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make mango should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/mango/cm_mango-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-mango.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-mango.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Sony Ericsson Xperia Pro (iyokan)

Sony Ericsson Xperia Pro ("iyokan") Cyanogenmod

Cyanogenmod ROM Sony Ericsson Xperia Pro (iyokan)

Quick Info

Download CyanogenMod

It looks like we don’t have any roms for download for this device. 🙁

Note: Support Status

This device does not support the latest official release of CyanogenMod. This may be due to hardware limitations or simply because development is ongoing. The most recent version supported is based on the jellybean branch of CyanogenMod.

Notes

The Sony Ericsson Xperia Pro (GSM) (aka iyokan) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Pro (GSM) was added in CyanogenMod 7.1.

Special boot modes

  • Bootloader: Press & hold the Menu button while connecting the device to the computer
  • Fastboot: Press & hold the Menu button while connecting the device to the computer

Source code

Device http://www.github.com/cyanogenmod/android_device_semc_iyokan
Kernel http://www.github.com/cyanogenmod/semc-kernel-msm7x30
Xperia Pro Specifications
Codename: iyokan
Vendor: Sony Ericsson
Release date: 2011 October
Type: phone (slider)
GSM freq: 850 900 1800 1900 MHz GSM/GPRS/EDGE
900 2100 MHz UMTS/HSPA+ (INTERNATIONAL)
800 850 1900 2100 MHz UMTS/HSPA+ (CANADA)
Platform: Qualcomm MSM8255
CPU: 1 GHz single-core Qualcomm Snapdragon S2
GPU: Qualcomm Adreno 205
RAM: 512MB
Weight: 142 g (5.0 oz)
Dimensions: 120 mm (4.7 in) (h)
57 mm (2.24 in) (w)
14 mm (0.551 in) (d)
Screen size: 94 mm (3.7 in)
Resolution: 854×480 (FWVGA)
Screen type: TFT LCD
Internal storage: 400MB
SD Card: up to 32GB
Bluetooth: Bluetooth 2.1+EDR w/A2DP
Wi-Fi: 802.11b/g/n
Main camera: 8 megapixel with LED flash
Secondary camera: 0.3 megapixel
Power: 1500 mAh internal rechargeable removable lithium-ion polymer battery
Peripherals: microUSB, A-GPS, DNLA, microHDMI, capacitive touchscreen, proximity & ambient light sensors, volume controls, 3-axis accelerometer, digital compass, touchpad, PSP-esq buttons
CM supported: 7, 9, 10
Latest CM version: jellybean

How to Install CyanogenMod on the Sony Ericsson Xperia Pro (iyokan)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Sony Ericsson Xperia Pro (GSM) (aka iyokan) is a touchscreen smartphone manufactured by Sony Ericsson. Official CyanogenMod support for the Sony Ericsson Xperia Pro (GSM) was added in CyanogenMod 7.1.

Unlock your Xperia Pro

What does “unlocking” mean?

The first step in putting any custom operating system on your Xperia Pro is to unlock the bootloader. A bootloader is the very first program that runs when you turn on your device. The bootloader initializes some hardware and then loads the kernel and ramdisk, and gets the boot process going. If the bootloader is in locked mode, it will ensure that only the stock operating system can run. Since you will be installing your own operating system (CyanogenMod), you need to turn this off.

To unlock your bootloader, you’ll first need a program on your computer called adb. One way to get adb is to download and install the Android SDK (Software Developer Kit) from Google. The SDK is used by app developers when they’re writing programs for Android, and who knows, you may want to write apps someday.

Install the Android SDK

Download the SDK, per the steps on Google’s web page. Then install it by following the specific instructions for your computer.

Obtaining the Bootloader Unlock Code

Note:

Unlocking the bootloader on a Sony device may automatically wipe internal storage; a backup of the sdcard is suggested. It will also irreversibly erase the DRM keys stored in the TA partition of some devices, which will result in the loss of certain proprietary features that may have been included. Check your specific device forum on XDA to learn more.

In order to unlock the bootloader on your Xperia Pro you will need to obtain a code from Sony. The following process will help you acquire this code so that you can flash a custom recovery.

  1. Open the Phone application on the Xperia Pro and enter *#06# to obtain the device’s IMEI, IDID or MEID. Save this for later use.
    • Optional: if you do not have a phone app, the IMEI, IDID or MEID can be found on the box or on the device in Settings -> About Device -> Status.
  2. Put the device into fastboot mode:
    • Press & hold the Menu button while connecting the device to the computer
  3. Open a terminal on the PC and enter fastboot getvar version
    • If you receive the message <waiting for device> fastboot is not configured properly, please see fastboot for more details.
  4. Navigate a browser here
    • Select your device and click the ‘continue’ button at the bottom of the page.
    • Enter your email address, agree to the terms and select ‘Submit’
    • Click the link from your email, enter your IMEI, IDID or MEID and continue
    • The unlock code should now appear, write this down for the next step.
  5. In the PC’s terminal, enter the following command: fastboot oem unlock 0xKEY
    • KEY corresponds to the unlock code you were given.

The Xperia Pro’s bootloader should now be unlocked.

Installing CyanogenMod on Sony Devices

  1. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  2. Extract boot.img from the zip to your computer, you will need this file for fastboot.
  3. Put the phone into fastboot mode:
    Press & hold the Menu button while connecting the device to the computer
  4. Open a terminal on the PC with admin rights, access your platform-tools directory of the Android SDK, and enter the following:
    • fastboot flash boot boot.img
    • fastboot reboot
    While the device reboots, press the Volume rockers a few times to load recovery.
Note: Make the selection below based on the recovery version you see on your screen. If you’re installing CyanogenMod 11, you will have CWM Recovery. If installing CyanogenMod 12.0 or newer, you will have CyanogenMod Recovery.
Click here to continue instructions using CyanogenMod Recovery
Note: Once the device boots into CyanogenMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection. The recovery is also touch screen friendly, so you can swipe up or down to scroll and tap the item you wish to select.
  1. Optional (Recommended): Using adb you can create a backup on your PC of your apps and app data. Boot the device into android and open a command prompt (or terminal on Mac and Linux) and enter the following:
    • adb backup -apk -all -f backup20161224.ab
    When the backup is complete return to recovery mode.
  2. On the device, select wipe data/factory reset.
  3. You have two options for installing the installation zip packages. (Note: The sideload method requires a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors):
    • Sideload method: Select apply update > apply update from adb. Open a command prompt (or Terminal on Mac and Linux) and enter adb sideload update.zip, where update.zip should be replaced with the package filename. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Install update method: If you previously placed the installation zip packages on your internal storage, select apply update > choose from internal storage. Navigate to the directory where you placed the packages and select one. If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Click here to continue instructions using CWM Recovery
Note:Once the device boots into ClockworkMod Recovery, use the physical volume buttons to move up and down. The home button is used to confirm your selection.
  1. Optional (Recommended): Select backup and restore to create a backup of your current ROM.
  2. Select wipe data/factory reset. If you get an error formatting /data, try format /data and /data/media from the mounts and storage menu
  3. You have two options for transferring and installing the installation zip packages. Both cases require a recent version of adb to be working in recovery (adb bundled with ubuntu may have protocol errors). The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 as a mountable volume, go ahead and mount it. If you do not see this directory, then instead mount the /data directory. Take note of which volume you mounted. Now, push the package(s) to your device:
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /data, then: adb push update.zip /sdcard/0/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  4. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Note:

On all 2011 model Sony devices, the kernel will not update when flashed in recovery, so the kernel must be updated via fastboot every time you flash a new build of CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Sony Ericsson Xperia Pro (iyokan)

Introduction

These instructions will hopefully assist you to start with a stock Xperia Pro, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Xperia Pro
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Xperia Pro (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b jellybean

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast iyokan

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast iyokan

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Xperia Pro is connected to your computer via the USB cable and that you are in the ~/android/system/device/semc/iyokan directory (you can cd ~/android/system/device/semc/iyokan if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/semc directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/semc directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch iyokan

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make iyokan should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/iyokan/cm_iyokan-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-10-20161224-UNOFFICIAL-iyokan.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-10-20161224-UNOFFICIAL-iyokan.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.