Amazon Kindle Fire HDX 7 (3rd gen) (thor)

CyanogenMod ROM Amazon Kindle Fire HDX 7 (3rd gen) (thor)

CyanogenMod ROM Amazon Kindle Fire HDX 7 (3rd gen) (thor)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 14.1 (Android 7.1 (Nougat))

Notes

The Kindle Fire HDX 7 has a locked bootloader. You must be on bootloader version 3.2.3 and below for custom boot/recovery support.

Special boot modes

  • Recovery: During bootloader splash screen (grey Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds.
  • Fastboot: During bootloader splash screen (grey Kindle logo), press Volume Down (button farther from camera) and continue holding for 2 more seconds.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_thor
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_hdx-common
Kindle Fire HDX 7 (3rd Gen) Specifications
Codename: thor
Vendor: Amazon
Release date: 2013 October 18
Type: tablet
Platform: MSM8974
CPU: 2.2 GHz quad-core Snapdragon 800
GPU: Adreno 330
RAM: 2GB
Weight: 303 g (10.7 oz)
Dimensions: 186 mm (7.3 in) (w)
128 mm (5.0 in) (h)
9.0 mm (0.35 in) (d)
Screen size: 180 mm (7 in)
Resolution: 1920×1200
Screen density: 323 ppi
Screen type: IPS LCD
Internal storage: 16GB/32GB/64GB
SD Card: none
Bluetooth: 4.0 + EDR (HID and A2DP profiles only)
Wi-Fi: Dual-band 802.11 a/b/g/n
Main camera: 1.2MP front-facing
Power: 4500 mAh (8 hours of use)
CM supported: 13, 14.1

How to Install CyanogenMod on the Amazon Kindle Fire HDX 7 (3rd Gen) (thor)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Kindle Fire HDX 7 has a locked bootloader. You must be on bootloader version 3.2.3 and below for custom boot/recovery support.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During bootloader splash screen (grey Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire HDX 7 (3rd Gen) (thor)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire HDX 7 (3rd Gen), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire HDX 7 (3rd Gen)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire HDX 7 (3rd Gen) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast thor

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast thor

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire HDX 7 (3rd Gen) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/thor directory (you can cd ~/android/system/device/amazon/thor if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch thor

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make thor should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/thor/cm_thor-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-thor.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-thor.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire HDX 8.9 (3rd gen) (apollo)

CyanogenMod ROM Amazon Kindle Fire HDX 8.9 (3rd gen) (apollo)

CyanogenMod ROM Amazon Kindle Fire HDX 8.9 (3rd gen) (apollo)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 14.1 (Android 7.1 (Nougat))

Notes

The Kindle Fire HDX 8.9 has a locked bootloader. You must be on bootloader version 3.2.3 and below for custom boot/recovery support.

Special boot modes

  • Recovery: During bootloader splash screen (grey Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds.
  • Fastboot: During bootloader splash screen (grey Kindle logo), press Volume Down (button farther from camera) and continue holding for 2 more seconds.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_apollo
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_hdx-common
Kindle Fire HDX 8.9 (3rd Gen – 2013) Specifications
Codename: apollo
Vendor: Amazon
Release date: 2013 November 7
Type: tablet
Platform: APQ8074
CPU: 2.2 GHz quad-core Snapdragon 800
GPU: Adreno 330
RAM: 2GB
Weight: 374 g (13.2 oz)
Dimensions: 231 mm (9.09 in) (w)
158 mm (6.22 in) (h)
7.8 mm (0.31 in) (d)
Screen size: 230 mm (8.9 in)
Resolution: 2560×1600
Screen density: 339 ppi
Screen type: IPS LCD
Internal storage: 16GB/32GB/64GB
SD Card: none
Bluetooth: 4.0 + EDR (HID and A2DP profiles only)
Wi-Fi: Dual-band 802.11 a/b/g/n
Main camera: 1.2MP front-facing
Secondary camera: 8MP rear-facing
Power: 6000 mAh (8 hours of use)
CM supported: 13, 14.1

How to Install CyanogenMod on the Amazon Kindle Fire HDX 8.9 (3rd Gen – 2013) (apollo)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Kindle Fire HDX 8.9 has a locked bootloader. You must be on bootloader version 3.2.3 and below for custom boot/recovery support.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Boot to recovery mode, and connect the phone to your computer through USB.
    • During bootloader splash screen (grey Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds.
  4. In ClockworkMod Recovery, use the physical volume buttons to move up and down. On most devices, the power button is used to confirm a menu selection, but for some devices a physical home key acts as a selector. Some devices have touch enabled ClockworkMod Recovery, in which case you may be able to swipe to, or touch, menu selections.
  5. Optional (Recommended): Select backup and restore to create a backup.
  6. Select wipe data/factory reset.
  7. You have two options for transferring and installing the installation packages. The sideload method is more universal across devices, whereas the push and install method is more commonly used:
    • Sideload method: select install zip > install zip from sideload. Follow the on-screen notices to install the package. The installer does not necessarily display an “Install complete.” message. You can tell the install is complete if there were no fatal error messages and you have regained control over the menu.
    • Push and install method: Open a command prompt (or Terminal on Mac and Linux) and navigate to the directory holding the package(s) you would like to install. On the device, navigate to the mounts and storage menu. If you see /storage/sdcard0 or /sdcard as a mountable volume, go ahead and mount it. If you do not see one of these partitions, then instead mount the /data partition. Take note of which volume you mounted. Now, push the package(s) to your device (also, see tip below):
    – If you mounted /storage/sdcard0, then: adb push update.zip /storage/sdcard0/
    – If you mounted /sdcard or /data, then: adb push update.zip /sdcard/
    where update.zip should be replaced with the package filename. Go back to the main menu and select install zip. Choose to install from the same directory where you pushed the package(s). If you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it.
  8. Once installation has finished, return to the main menu and select reboot system now. The device will now boot into CyanogenMod.

Helpful Tip – SD card folders

CyanogenMod 10.1 and newer have multi-user support (introduced in Android 4.2). If your device has storage on the /data partition, then Android actually looks in /data/media/0/ for the first user’s /sdcard/ storage. ClockworkMod recovery symlinks /sdcard/ to /data/media/ though. So, if you are pushing files to internal storage in recovery and want them to be visible in Android, you should push them to /sdcard/0/ or /data/media/0/. Here’s the most frequent scenarios:

  1. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10 or older: adb push update.zip /sdcard/
  2. If you’re coming from a ROM with Android 4.1 or older to CyanogenMod 10.1 or newer: adb shell "mkdir /sdcard/0/" followed by adb push update.zip /sdcard/0/
  3. If you’re coming from a ROM with Android 4.2 or newer to CyanogenMod 10.1 or newer: adb push update.zip /sdcard/0/

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire HDX 8.9 (3rd Gen – 2013) (apollo)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire HDX 8.9 (3rd Gen – 2013), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire HDX 8.9 (3rd Gen – 2013)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire HDX 8.9 (3rd Gen – 2013) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast apollo

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast apollo

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire HDX 8.9 (3rd Gen – 2013) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/apollo directory (you can cd ~/android/system/device/amazon/apollo if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch apollo

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make apollo should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/apollo/cm_apollo-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161225-UNOFFICIAL-apollo.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161225-UNOFFICIAL-apollo.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire X (1st Gen) (otterx)

CyanogenMod ROM Amazon Kindle Fire X (1st Gen) (otterx)

CyanogenMod ROM Amazon Kindle Fire X (1st Gen) (otterx)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 11 (Android 4.4-4.4.4 (KitKat))

Special boot modes

  • Recovery: During bootloader splash screen (typically a gray Kindle logo), press Power to open the boot menu, and then press Power again (as a short press) to move to the Recovery Boot menu item. Then, LONG press the Power button to make this selection.
  • Fastboot: Use fastboot cable or pre-enter fastboot command during bootloader to enter fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_otterx
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_otter-common
Kindle Fire X (1st Gen) Specifications
Codename: otterx
Vendor: Amazon
Release date: 2011 September 28
Type: tablet
Platform: TI OMAP4430
CPU: 1 GHz dual-core Cortex A9
GPU: PowerVR SGX540
RAM: 512MB
Weight: 413 g (14.6 oz)
Dimensions: 190 mm (7.5 in) (h)
120 mm (4.7 in) (w)
11.4 mm (0.45 in) (d)
Screen size: 178 mm (7.0 in)
Resolution: 600×1024
Screen density: 160 ppi
Screen type: IPS LCD
Internal storage: 8GB
SD Card: none
Wi-Fi: 802.11 a/b/g/n
Power: 4400 mAh (6-7 hours of use)
CM supported: 11

How to Install CyanogenMod on the Amazon Kindle Fire X (1st Gen) (otterx)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing OtterX U-Boot and TeamWin Recovery (TWRP) on Kindle Fire X (1st Edition)

If the Kindle Fire X already has OtterX U-Boot and TWRP for OtterX installed you may skip this section.

THIS IS A ONE TIME BOOTLOADER INSTALLATION TO ENABLE OTTERX MODE AND BOOT MENU RECOVERY ENTRY

WARNING: This bootloader is ONLY for the Kindle Fire 1st Edition. Not to be used by ANY other Kindle Fire.

Step 1: This process will COMPLETELY ERASE the contents of your device.
MAKE SURE TO PULL ANY MEDIA YOU WISH TO KEEP OFF THE DEVICE BEFORE PROCEEDING.

Step 2: Test your fastboot driver installation by doing the following:

For those using the stock Kindle Fire bootloader still, a fastboot cable is needed for this procedure. This cable is a special USB cable with a powered pin that normal USB cables do not have.

  1. Power down your device if necessary
  2. Type the following command into a cmd/terminal window on your PC:
    fastboot getvar product
  3. Should return with: < waiting for device >
  4. If you need to, connect your fastboot cable to the Kindle at this time
  5. Reboot the device
  6. Your terminal window should show something like:
    product: kindle

If you have any problems with these initial steps try downloading Amazon’s USB drivers for the Kindles and then repeat the above till you see the desired response.

Step 3: Download the files you will need to install OtterX bootloader & TWRP OtterX recovery:

  1. OtterX Bootloader (for 1st Edition ONLY):
    otterx-u-boot_v2.05.bin
    md5sum 241a3fd1edad0a0d95886ddeb4693e1c
    VERY IMPORTANT THAT YOU DOUBLE CHECK THE MD5SUM ON THIS FILE. IF ITS CORRUPTED AND YOU APPLY WITH FASTBOOT, YOUR DEVICE WILL BE HARD TO RECOVER.
  2. OtterX TWRP Recovery:
    otterx-twrp-2.7.1.0-recovery.img
    md5sum ec8e8a67492d5fd06494f854bb59b2ae

Step 4: Use fastboot to apply bootloader file

  1. Using the same process as Step 2, put the device in fastboot mode
  2. On your PC open a shell command window and make sure you’re in the same directory as where you saved the OtterX bootloader and TWRP files from Step 3
  3. Enter the following command: fastboot flash bootloader otterx-u-boot_v2.05.bin
  4. You should see: finished. total time: <some time here>

Step 5: Set the device to OtterX partition layout

INSTRUCTIONS TO BE FILLED IN HERE

Step 6: Use fastboot to apply TWRP recovery

  1. Using the same process as Step 2, put the device in fastboot mode
  2. On your PC confirm that you are still in a shell command window cd’d to the same directory as where you saved the OtterX bootloader and TWRP files from Step 3
  3. Enter the following command: fastboot flash recovery otterx-twrp-2.7.1.0-recovery.img
  4. Then to enter recovery: fastboot oem recovery

Step 7: Using TWRP recovery, format system, userdata and cache and reboot back into TWRP recovery.

INSTRUCTIONS TO BE FILLED IN HERE

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During bootloader splash screen (typically a gray Kindle logo), press Power to open the boot menu, and then press Power again (as a short press) to move to the Recovery Boot menu item. Then, LONG press the Power button to make this selection.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire X (1st Gen) (otterx)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire X (1st Gen), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire X (1st Gen)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire X (1st Gen) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast otterx

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast otterx

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire X (1st Gen) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/otterx directory (you can cd ~/android/system/device/amazon/otterx if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch otterx

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make otterx should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/otterx/cm_otterx-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-otterx.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-otterx.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire HD 8.9 (jem)

Cyanogenmod ROM Amazon Kindle Fire HD 8.9 (jem)

Cyanogenmod ROM Amazon Kindle Fire HD 8.9 (jem)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 12.1 (Android 5.1 (Lollipop))

Notes

The Kindle Fire HD 8.9″ has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

Special boot modes

  • Recovery: During 1st bootloader splash screen (yellow Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds after the new blue Kindle logo shows.
  • Fastboot: Pre-enter fastboot command during 2nd-bootloader to enter fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_jem
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_bowser-common
Kindle Fire HD 8.9 Specifications
Codename: jem
Vendor: Amazon
Release date: 2012 November 20
Type: tablet
Platform: TI OMAP4470
CPU: 1.5 GHz dual-core Cortex A9
GPU: PowerVR SGX544
RAM: 1GB
Weight: 545 g (19.2 oz)
Dimensions: 240 mm (9.45 in) (w)
160 mm (6.30 in) (h)
8.8 mm (0.35 in) (d)
Screen size: 226 mm (8.9 in)
Resolution: 1200×1920
Screen density: 254 ppi
Screen type: IPS LCD
Internal storage: 16GB/32GB/64GB
SD Card: none
Bluetooth: 3.0
Wi-Fi: Dual-band 802.11 a/b/g/n
Main camera: 1MP front-facing
Power: 6000 mAh (6-7 hours of use)
CM supported: 11, 12.1

How to Install CyanogenMod on the Amazon Kindle Fire HD 8.9 (jem)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The Kindle Fire HD 8.9″ has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

One-Time Install of Amazon 2nd-Bootloader Exploit

THIS IS A ONE TIME INSTALLATION TO ENABLE CUSTOM RECOVERY / ROMS

These instructions are for the Kindle Fire 2nd Ed.(otter2) / Kindle Fire HD 7″ (2012)(tate) and Kindle Fire HD 8.9″ (jem) devices only!

Step 1: Test your fastboot driver installation by doing the following:

(For Kindle Fire 2nd Ed. and Kindle Fire HD 7″ (2012) a fastboot cable is needed for this procedure. This cable is a special USB cable with a powered pin that normal USB cables do not have. For the Kindle Fire HD 8.9″ it is not required.)

  1. Power down your device if necessary
  2. Type the following command into a cmd/terminal window on your PC:
    fastboot -i 0x1949 getvar product
  3. Should return with: < waiting for device >
  4. If you need to, connect your fastboot cable to the Kindle at this time
  5. Reboot the device
  6. It *SHOULD* show a Fastboot screen and your terminal window should show something like:
    product: jem-XXX-XX

If you have any problems with these initial steps try downloading Amazon’s USB drivers for the Kindles and then repeat the above till you see the desired response.

Step 2: Download the files you will need to install 2nd-bootloader & TWRP recovery:

  1. An older bootloader with an unlock exploit (this is specific to your device):
    kfhd8-u-boot-prod-8.1.4.bin
    md5sum a56f24c0c01aaea4bf408bc710faadaa
    VERY IMPORTANT THAT YOU DOUBLE CHECK THE MD5SUM ON THIS FILE. IF ITS CORRUPTED AND YOU APPLY WITH FASTBOOT, YOUR DEVICE IS A BRICK.
  2. TWRP Recovery:
    kfhd8-twrp-2.8.7.0-recovery.img
    md5sum 9ff016b4b0ca6e71e05996502d49ea4c
  3. Freedom Boot.img:
    kfhd8-freedom-boot-8.4.6.img
    md5sum 8374cf88e75abda8c374044a1f0daa5f

Step 3: Use fastboot to apply exploit files and reboot into recovery
With the device powered off: connect your FASTBOOT USB cable(if needed) to the Kindle which should cause it to power on and enter “FASTBOOT” mode.
Issue the following commands into your command/terminal window on your PC 1 at a time.
(if you don’t need a fastboot cable then power on the device after entering the 1st command below)

  1. fastboot -i 0x1949 flash bootloader kfhd8-u-boot-prod-8.1.4.bin
  2. fastboot -i 0x1949 flash recovery kfhd8-twrp-2.8.7.0-recovery.img
  3. fastboot -i 0x1949 flash boot kfhd8-freedom-boot-8.4.6.img
  4. (if using a fastboot USB cable swap to a normal USB cable before entering the next command)
  5. fastboot -i 0x1949 oem recovery

If all has gone well, then your device should now be in recovery. (No need to do step #4 below in the installation process)

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During 1st bootloader splash screen (yellow Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds after the new blue Kindle logo shows.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire HD 8.9 (jem)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire HD 8.9, unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire HD 8.9
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire HD 8.9 (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast jem

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast jem

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire HD 8.9 is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/jem directory (you can cd ~/android/system/device/amazon/jem if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch jem

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make jem should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/jem/cm_jem-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-jem.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-jem.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire HD 7 (tate)

CyanogenMod ROM Amazon Kindle Fire HD 7 (tate)

CyanogenMod ROM Amazon Kindle Fire HD 7 (tate)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 12.1 (Android 5.1 (Lollipop))

Notes

Note:

The 2012 release Kindle Fire HD 7″ has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

WARNING:

Be sure you have a 2012 “Tate” device and not the 2013 Kindle Fire HD 7″ “Soho” device. The 2013 model does NOT have a camera. And it currently has no exploit for loading a custom recovery. Using the Tate exploit files on a Soho device will end with an unrecoverable brick.

Special boot modes

  • Recovery: During 1st bootloader splash screen (yellow Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds after the new blue Kindle logo shows.
  • Fastboot: Use fastboot cable or pre-enter fastboot command during 2nd-bootloader to enter fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_tate
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_bowser-common
Kindle Fire HD 7 (2012) Specifications
Codename: tate
Vendor: Amazon
Release date: 2012 September 14
Type: tablet
Platform: TI OMAP4460
CPU: 1.2 GHz dual-core Cortex A9
GPU: PowerVR SGX540
RAM: 1GB
Weight: 345 g (13.9 oz)
Dimensions: 191 mm (7.5 in) (h)
128 mm (5.0 in) (w)
10.6 mm (0.42 in) (d)
Screen size: 178 mm (7.0 in)
Resolution: 1280×800
Screen density: 216 ppi
Screen type: IPS LCD
Internal storage: 16GB/32GB
SD Card: none
Bluetooth: 3.0
Wi-Fi: Dual-band 802.11 a/b/g/n
Main camera: 1MP front-facing
Power: 4400 mAh (6-7 hours of use)
CM supported: 11, 12.1

How to Install CyanogenMod on the Amazon Kindle Fire HD 7 (2012) (tate)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

Note:

The 2012 release Kindle Fire HD 7″ has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

WARNING:

Be sure you have a 2012 “Tate” device and not the 2013 Kindle Fire HD 7″ “Soho” device. The 2013 model does NOT have a camera. And it currently has no exploit for loading a custom recovery. Using the Tate exploit files on a Soho device will end with an unrecoverable brick.

One-Time Install of Amazon 2nd-Bootloader Exploit

THIS IS A ONE TIME INSTALLATION TO ENABLE CUSTOM RECOVERY / ROMS

These instructions are for the Kindle Fire 2nd Ed.(otter2) / Kindle Fire HD 7″ (2012)(tate) and Kindle Fire HD 8.9″ (jem) devices only!

Step 1: Test your fastboot driver installation by doing the following:

(For Kindle Fire 2nd Ed. and Kindle Fire HD 7″ (2012) a fastboot cable is needed for this procedure. This cable is a special USB cable with a powered pin that normal USB cables do not have. For the Kindle Fire HD 8.9″ it is not required.)

  1. Power down your device if necessary
  2. Type the following command into a cmd/terminal window on your PC:
    fastboot -i 0x1949 getvar product
  3. Should return with: < waiting for device >
  4. If you need to, connect your fastboot cable to the Kindle at this time
  5. Reboot the device
  6. It *SHOULD* show a Fastboot screen and your terminal window should show something like:
    product: tate-XXX-XX

If you have any problems with these initial steps try downloading Amazon’s USB drivers for the Kindles and then repeat the above till you see the desired response.

Step 2: Download the files you will need to install 2nd-bootloader & TWRP recovery:

  1. An older bootloader with an unlock exploit (this is specific to your device):
    kfhd7-u-boot-prod-7.2.3.bin
    md5sum bb029673d8f186db4dff6d38f4aa28cf
    VERY IMPORTANT THAT YOU DOUBLE CHECK THE MD5SUM ON THIS FILE. IF ITS CORRUPTED AND YOU APPLY WITH FASTBOOT, YOUR DEVICE IS A BRICK.
  2. TWRP Recovery:
    kfhd7-twrp-2.8.7.0-recovery.img
    md5sum e5b9726244f143c21fe4e8365634624e
  3. Freedom Boot.img:
    kfhd7-freedom-boot-7.4.6.img
    md5sum 1628fc4750d0d49cbce41ab616a9d732

Step 3: Use fastboot to apply exploit files and reboot into recovery
With the device powered off: connect your FASTBOOT USB cable(if needed) to the Kindle which should cause it to power on and enter “FASTBOOT” mode.
Issue the following commands into your command/terminal window on your PC 1 at a time.
(if you don’t need a fastboot cable then power on the device after entering the 1st command below)

  1. fastboot -i 0x1949 flash bootloader kfhd7-u-boot-prod-7.2.3.bin
  2. fastboot -i 0x1949 flash recovery kfhd7-twrp-2.8.7.0-recovery.img
  3. fastboot -i 0x1949 flash boot kfhd7-freedom-boot-7.4.6.img
  4. (if using a fastboot USB cable swap to a normal USB cable before entering the next command)
  5. fastboot -i 0x1949 oem recovery

If all has gone well, then your device should now be in recovery. (No need to do step #4 below in the installation process)

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During 1st bootloader splash screen (yellow Kindle logo), press Volume Up (button closer to camera) and continue holding for 2 more seconds after the new blue Kindle logo shows.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire HD 7 (2012) (tate)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire HD 7 (2012), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire HD 7 (2012)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire HD 7 (2012) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast tate

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast tate

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire HD 7 (2012) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/tate directory (you can cd ~/android/system/device/amazon/tate if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch tate

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make tate should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/tate/cm_tate-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-tate.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-tate.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire (2nd Gen) (otter2)

CyanogenMod ROM Amazon Kindle Fire (2nd Gen) (otter2)

CyanogenMod ROM Amazon Kindle Fire (2nd Gen) (otter2)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 11 (Android 4.4-4.4.4 (KitKat))

Notes

The 2nd-generation Kindle Fire has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

Special boot modes

  • Recovery: During bootloader splash screen (blue Kindle logo), press Power repeatedly to open boot menu and move selection from Normal Boot to Recovery.
  • Fastboot: Use fastboot cable or pre-enter fastboot command during bootloader to enter fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_otter2
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_otter-common
Kindle Fire (2nd Gen) Specifications
Codename: otter2
Vendor: Amazon
Release date: 2012 September 7
Type: tablet
Platform: TI OMAP4430
CPU: 1.2 GHz dual-core Cortex A9
GPU: PowerVR SGX540
RAM: 1GB
Weight: 413 g (14.6 oz)
Dimensions: 190 mm (7.5 in) (h)
120 mm (4.7 in) (w)
11.4 mm (0.45 in) (d)
Screen size: 178 mm (7.0 in)
Resolution: 600×1024
Screen density: 160 ppi
Screen type: IPS LCD
Internal storage: 8GB
SD Card: none
Wi-Fi: 802.11 a/b/g/n
Power: 4400 mAh (6-7 hours of use)
CM supported: 10.1, 10.2, 11

How to Install CyanogenMod on the Amazon Kindle Fire (2nd Gen) (otter2)

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Important Notes

The 2nd-generation Kindle Fire has a locked bootloader. You must install a 2nd-bootloader for custom recovery support.

One-Time Install of Amazon 2nd-Bootloader Exploit

THIS IS A ONE TIME INSTALLATION TO ENABLE CUSTOM RECOVERY / ROMS

These instructions are for the Kindle Fire 2nd Ed.(otter2) / Kindle Fire HD 7″ (2012)(tate) and Kindle Fire HD 8.9″ (jem) devices only!

Step 1: Test your fastboot driver installation by doing the following:

(For Kindle Fire 2nd Ed. and Kindle Fire HD 7″ (2012) a fastboot cable is needed for this procedure. This cable is a special USB cable with a powered pin that normal USB cables do not have. For the Kindle Fire HD 8.9″ it is not required.)

  1. Power down your device if necessary
  2. Type the following command into a cmd/terminal window on your PC:
    fastboot -i 0x1949 getvar product
  3. Should return with: < waiting for device >
  4. If you need to, connect your fastboot cable to the Kindle at this time
  5. Reboot the device
  6. It *SHOULD* show a Fastboot screen and your terminal window should show something like:
    product: otter2-XXX-XX

If you have any problems with these initial steps try downloading Amazon’s USB drivers for the Kindles and then repeat the above till you see the desired response.

Step 2: Download the files you will need to install 2nd-bootloader & TWRP recovery:

  1. An older bootloader with an unlock exploit (this is specific to your device):
    otter2-u-boot-prod-10.2.4.bin
    md5sum 5b03a7b428325de8d360ec201a745498
    VERY IMPORTANT THAT YOU DOUBLE CHECK THE MD5SUM ON THIS FILE. IF ITS CORRUPTED AND YOU APPLY WITH FASTBOOT, YOUR DEVICE IS A BRICK.
  2. TWRP Recovery:
    otter2-twrp-2.6.3.1-recovery.img
    md5sum 033a20f09243db9792f4bf51965f476b
  3. Freedom Boot.img:
    otter2-freedom-boot-10.4.6.img
    md5sum 80f9b9ba80910de361463560f86f315a

Step 3: Use fastboot to apply exploit files and reboot into recovery
With the device powered off: connect your FASTBOOT USB cable(if needed) to the Kindle which should cause it to power on and enter “FASTBOOT” mode.
Issue the following commands into your command/terminal window on your PC 1 at a time.
(if you don’t need a fastboot cable then power on the device after entering the 1st command below)

  1. fastboot -i 0x1949 flash bootloader otter2-u-boot-prod-10.2.4.bin
  2. fastboot -i 0x1949 flash recovery otter2-twrp-2.6.3.1-recovery.img
  3. fastboot -i 0x1949 flash boot otter2-freedom-boot-10.4.6.img
  4. (if using a fastboot USB cable swap to a normal USB cable before entering the next command)
  5. fastboot -i 0x1949 oem recovery

If all has gone well, then your device should now be in recovery. (No need to do step #4 below in the installation process)

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During bootloader splash screen (blue Kindle logo), press Power repeatedly to open boot menu and move selection from Normal Boot to Recovery.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

Helpful Tip

See something wrong on this page? Click here: Report a Site Problem.

How To Build CyanogenMod For Amazon Kindle Fire (2nd Gen) (otter2)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire (2nd Gen), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire (2nd Gen)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire (2nd Gen) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast otter2

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast otter2

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire (2nd Gen) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/otter2 directory (you can cd ~/android/system/device/amazon/otter2 if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch otter2

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make otter2 should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/otter2/cm_otter2-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-otter2.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-otter2.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.

Amazon Kindle Fire (1st Gen) (otter)

Cyanogenmod ROM Amazon Kindle Fire (1st Gen) (otter)

CyanogenMod ROM Amazon Kindle Fire (1st Gen) (otter)

Quick Info

Download CyanogenMod

Download (nightly build)
CyanogenMod 11 (Android 4.4-4.4.4 (KitKat))

Special boot modes

  • Recovery: During bootloader splash screen (blue Kindle logo), press Power repeatedly to open boot menu and move selection from Normal Boot to Recovery.
  • Fastboot: Use fastboot cable or pre-enter fastboot command during bootloader to enter fastboot mode.

Source code

Device http://www.github.com/cyanogenmod/android_device_amazon_otter
Kernel http://www.github.com/cyanogenmod/android_kernel_amazon_otter-common
Kindle Fire (1st Gen) Specifications
Codename: otter
Vendor: Amazon
Release date: 2011 September 28
Type: tablet
Platform: TI OMAP4430
CPU: 1 GHz dual-core Cortex A9
GPU: PowerVR SGX540
RAM: 512MB
Weight: 413 g (14.6 oz)
Dimensions: 190 mm (7.5 in) (h)
120 mm (4.7 in) (w)
11.4 mm (0.45 in) (d)
Screen size: 178 mm (7.0 in)
Resolution: 600×1024
Screen density: 160 ppi
Screen type: IPS LCD
Internal storage: 8GB
SD Card: none
Wi-Fi: 802.11 a/b/g/n
Power: 4400 mAh (6-7 hours of use)
CM supported: 10.1, 10.2, 11

Note: DISCLAIMER

Modifying or replacing your device’s software may void your device’s warranty, lead to data loss, hair loss, financial loss, privacy loss, security breaches, or other damage, and therefore must be done entirely at your own risk. No one affiliated with the CyanogenMod project is responsible for your actions. Good luck.

Installing FireFireFire Bootloader v1.4a and TeamWin Recovery (TWRP) on the Kindle Fire 1st Gen

If the Kindle Fire 1st Gen already has FireFireFire v1.4a bootloader and TWRP installed you may skip this section.

  1. You will need ADB on the computer to install the new bootloader and recovery using the “Kindle Fire Utility”
  2. Install the Kindle Fire drivers (option 1, option 2)
  3. Root the device and set /sdcard as world read/write
  4. Download the latest version of the “Kindle Fire Utility” for Windows:
    • version 0.9.9: Download
      md5: a20011995d115c3b2d66dcc92303031e
  5. Unzip the Kindle Fire Utility package into a folder called kfu
  6. Open “run.bat”, this should start the utility
  7. From the main menu choose “Install Latest TWRP Recovery”
  8. Follow the instructions
  9. Next from the main menu choose “Install Latest FireFireFire”
  10. Follow the instructions
  11. The Kindle Fire 1st Gen should now have TWRP and the FireFireFire bootloader installed.

NOTE: If your device appears to have issues fastbooting, gives bp1 panic messages, or is still waiting for the device you may need to manually fastboot it (steps 1-5 in guide) and then install TWRP Recovery, then again manually fastboot and install FireFireFire.

Kindle Fire Utility Credits:

  1. VashyPooh for script development
  2. awidawad for currently maintaining the script
  3. Initial work by ubeezee & yareally on there forum thread.
  4. Full revert based off method from Clavin, “tweaked” by Vashypooh.
  5. Full credit of TWRP goes to Team Win for releasing an awesome tool! Good job guys.
  6. rooobbbbb on XDA for the Wallpaper Lock trick.
  7. Jolleyboy/Bandage on XDA for Android Market guide/ Android Apps.
  8. Sync settings found by Abramel @ XDA.

Installing CyanogenMod from recovery

  1. Make sure your computer has working adb.
  2. Download the CyanogenMod build package for your device that you’d like to install to your computer.
    Optional: Download 3rd party applications packages, like Google Apps which are necessary to download apps from Google Play.
  3. Place the CyanogenMod .zip package, as well as any optional .zip packages, on the root of /sdcard:
    • Using adb: adb push filename.zip /sdcard/
    Note: You can copy the .zip packages to your device using any method you are familiar with. The adb method is used here because it is universal across all devices and works in both Android and recovery mode. If you are in recovery mode, you may need to ensure /sdcard (sometimes called Internal Storage) is mounted by checking its status in the Mounts menu. If you have booted regularly, USB debugging must be enabled.
  4. If you are not already in recovery, boot to recovery mode now.
    • During bootloader splash screen (blue Kindle logo), press Power repeatedly to open boot menu and move selection from Normal Boot to Recovery.
  5. In Team Win Recovery Project, select menu choices by tapping on the appropriately labelled button.
  6. Optional (Recommended): Select the Backup button to create a backup.
  7. Select Wipe and then Factory Reset.
  8. Select Install.
  9. Navigate to /sdcard and select the CyanogenMod .zip package.
  10. Follow the on-screen notices to install the package.
  11. Optional: Install any additional packages you wish using the same method (if you are installing multiple packages, install CyanogenMod first and then install any subsequent packages on top of it).
  12. Once installation has finished, return to the main menu and select Reboot, then System. The device will now boot into CyanogenMod.

How To Build CyanogenMod For Amazon Kindle Fire (1st Gen) (otter)

Introduction

These instructions will hopefully assist you to start with a stock Kindle Fire (1st Gen), unlock the bootloader (if necessary), and then download the required tools as well as the very latest source code for CyanogenMod (based on Google’s Android operating system). Using these, you can build both CyanogenMod and CyanogenMod Recovery image from source code, and then install them both to your device.

It is difficult to say how much experience is necessary to follow these instructions. While this guide is certainly not for the very very very uninitiated, these steps shouldn’t require a PhD in software development either. Some readers will have no difficulty and breeze through the steps easily. Others may struggle over the most basic operation. Because people’s experiences, backgrounds, and intuitions differ, it may be a good idea to read through just to ascertain whether you feel comfortable or are getting over your head.

Remember, you assume all risk of trying this, but you will reap the rewards! It’s pretty satisfying to boot into a fresh operating system you baked at home :) And once you’re an Android-building ninja, there will be no more need to wait for “nightly” builds from anyone. You will have at your fingertips the skills to build a full operating system from code to a running device, whenever you want. Where you go from there– maybe you’ll add a feature, fix a bug, add a translation, or use what you’ve learned to build a new app or port to a new device– or maybe you’ll never build again– it’s all really up to you.

What you’ll need

  • A Kindle Fire (1st Gen)
  • A relatively recent computer (Linux, OS X, or Windows) with a reasonable amount of RAM and about 100 GB of free storage (more if you enable ccache or build for multiple devices). The less RAM you have, the longer the build will take (aim for 8 GB or more). Using SSDs results in considerably faster build times than traditional hard drives.
  • A USB cable compatible with the Kindle Fire (1st Gen) (typically micro USB, but older devices may use mini USB or have a proprietary cable)
  • A decent internet connection & reliable electricity :)
  • Some familiarity with basic Android operation and terminology. It would help if you’ve installed custom roms on other devices and are familiar with recovery. It may also be useful to know some basic command line concepts such as cd for “change directory”, the concept of directory hierarchies, that in Linux they are separated by /, etc.

If you are not accustomed to using Linux– this is an excellent chance to learn. It’s free– just download and run a virtual machine (VM) such as Virtualbox, then install a Linux distribution such as Ubuntu (AOSP vets Ubuntu as well). Any recent 64-bit version should work great, but the latest is recommended.

Note:

You want to use a 64-bit version of Linux. A 32-bit Linux environment will only work if you are building CyanogenMod 6 and older. For CyanogenMod 10.1, if you encounter issues with 64bit host binaries, you can set BUILD_HOST_32bit=1 in your environment. This is generally not needed, though, especially with CyanogenMod 10.2 and newer.

Using a VM allows Linux to run as a guest inside your host computer– a computer in a computer, if you will. If you hate Linux for whatever reason, you can always just uninstall and delete the whole thing. (There are plenty of places to find instructions for setting up Virtualbox with Ubuntu, so I’ll leave it to you to do that.)

So let’s begin!

Build CyanogenMod and CyanogenMod Recovery

Prepare the Build Environment

Note:

You only need to do these steps the first time you build. If you previously prepared your build environment and have downloaded the CyanogenMod source code for another device, skip to Prepare the device-specific code.

Install the SDK

If you have not previously installed adb and fastboot, install the Android SDK. “SDK” stands for Software Developer Kit, and it includes useful tools that you can use to flash software, look at the system logs in real time, grab screenshots, and more– all from your computer.

Helpful Tip

While the SDK contains lots of different things– the two tools you are most interested in for building Android are adb and fastboot, located in the /platform-tools directory.

Install the Build Packages

Several “build packages” are needed to build CyanogenMod. You can install these using the package manager of your choice.

Helpful Tip

A package manager in Linux is a system used to install or remove software (usually originating from the Internet) on your computer. With Ubuntu, you can use the Ubuntu Software Center. Even better, you may also use the apt-get install command directly in the Terminal. (Learn more about the apt packaging tool system from Wikipedia.)

For both 32-bit & 64-bit systems, you’ll need:

bc bison build-essential curl flex git gnupg gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk pngcrush schedtool squashfs-tools xsltproc zip zlib1g-dev

In addition to the above, for 64-bit systems, get these:

g++-multilib gcc-multilib lib32ncurses5-dev lib32readline-gplv2-dev lib32z1-dev

For Ubuntu 15.10 (wily) and newer, substitute:

  • lib32readline-gplv2-devlib32readline6-dev

For Ubuntu 16.04 (xenial) and newer, substitute (additionally see java notes below):

  • libwxgtk2.8-devlibwxgtk3.0-dev
  • openjdk-7-jdkopenjdk-8-jdk

Java versions: Different versions of CyanogenMod require different versions of the JDK (Java Development Kit):

  • CyanogenMod 7 – 9: Sun/Oracle Java SE 1.6
  • CyanogenMod 10.1: Sun/Oracle Java SE 1.6 or 1.7
  • CyanogenMod 10.2 – 11.0: Sun/Oracle Java SE 1.6 or 1.7 (OpenJDK 1.7 works fine, but the build system will display a warning)
  • CyanogenMod 12.0 – 13.0: OpenJDK 1.7 (see note about OpenJDK 1.8 below)
  • CyanogenMod 14.1: OpenJDK 1.8

Ubuntu 16.04 (Xenial Xerus) or newer and OpenJDK: Since OpenJDK 1.7 was removed from the official Ubuntu repositories, you have a couple options:

  1. Obtain OpenJDK 1.7 from the openjdk-r PPA
  2. Enable experimental OpenJDK 1.8 support in CyanogenMod 13.0 (not available in earlier version). To enable OpenJDK 1.8 support, add this line to your $HOME/.bashrc file: export EXPERIMENTAL_USE_JAVA8=true.

Also see http://source.android.com/source/initializing.html which lists needed packages.

Create the directories

You will need to set up some directories in your build environment.

To create them:

$ mkdir -p ~/bin
$ mkdir -p ~/android/system

Install the repo command

Enter the following to download the “repo” binary and make it executable (runnable):

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Put the ~/bin directory in your path of execution

In recent versions of Ubuntu, ~/bin should already be in your PATH. You can check this by opening ~/.profile with a text editor and verifying the following code exists (add it if it is missing):

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

Note: Make sure the cm branch entered here is the one you wish to build and is supported on your device.
$ cd ~/android/system/
$ repo init -u https://github.com/CyanogenMod/android.git -b cm-13.0

Download the source code

To start the download of all the source code to your computer:

$ repo sync

The CM manifests include a sensible default configuration for repo, which we strongly suggest you use (i.e. don’t add any options to sync). For reference, our default values are -j 4 and -c. The -j 4 part means that there will be four simultaneous threads/connections. If you experience problems syncing, you can lower this to -j 3 or -j 2. -c will ask repo to pull in only the current branch, instead of the entire CM history.

Prepare to wait a long time while the source code downloads.

Helpful Tip

The repo sync command is used to update the latest source code from CyanogenMod and Google. Remember it, as you can do it every few days to keep your code base fresh and up-to-date.

Get prebuilt apps (CM11 and below)

Next,

$ cd ~/android/system/vendor/cm

then enter:

$ ./get-prebuilts

You won’t see any confirmation- just another prompt. But this should cause some prebuilt apps to be loaded and installed into the source code. Once completed, this does not need to be done again.

Prepare the device-specific code

Helpful Tip – Errors during breakfast

Different maintainers setup their device inheritance rules differently. Some require a vendor directory to be populated before breakfast will even succeed. If you receive an error here about vendor makefiles, then jump down to the next section Extract proprietary blobs. The first portion of breakfast should have succeeded at pulling in the device tree and the extract blobs script should be available. After completing that section, you can rerun breakfast otter

After the source downloads, ensure you are in the root of the source code (cd ~/android/system), then type:

$ source build/envsetup.sh
$ breakfast otter

This will download the device specific configuration and kernel source for your device. An alternative to using the breakfast command is to build your own local manifest. To do this, you will need to locate your device on CyanogenMod’s GitHub and list all of the repositories defined in cm.dependencies in your local manifest.

Helpful Tip

If you want to know more about what source build/envsetup.sh does or simply want to know more about the breakfast, brunch and lunch commands, you can head over to the Envsetup help page.

Helpful Tip

Instead of typing cd ~/android/system every time you want to return back to the root of the source code, here’s a short command that will do it for you: croot. To use this command, you must first run source build/envsetup.sh from ~/android/system.

Extract proprietary blobs

Now ensure that your Kindle Fire (1st Gen) is connected to your computer via the USB cable and that you are in the ~/android/system/device/amazon/otter directory (you can cd ~/android/system/device/amazon/otter if necessary). Then run the extract-files.sh script:

$ ./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved to the ~/android/system/vendor/amazon directory. If you see errors about adb being unable to pull the files, adb may not be in the path of execution. If this is the case, see the adb page for suggestions for dealing with “command not found” errors.

Note:

Your device should already be running a build of CyanogenMod for the branch you wish to build for the extract-files.sh script to function properly.

Note:

It’s important that these proprietary files are extracted to the ~/android/system/vendor/amazon directory by using the extract-files.sh script. Makefiles are generated at the same time to make sure the blobs are eventually copied to the device. Without these blobs, CyanogenMod may build without error, but you’ll be missing important functionality, such as graphics libraries that enable you to see anything!

Turn on caching to speed up build

You can speed up subsequent builds by adding

export USE_CCACHE=1

to your ~/.bashrc file (what’s a .bashrc file?). Then, specify the amount of disk space to dedicate to ccache by typing this from the top of your Android tree:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

where 50G corresponds to 50GB of cache. This only needs to be run once and the setting will be remembered. Anywhere in the range of 25GB to 100GB will result in very noticeably increased build speeds (for instance, a typical 1hr build time can be reduced to 20min). If you’re only building for one device, 25GB-50GB is fine. If you plan to build for several devices that do not share the same kernel source, aim for 75GB-100GB. This space will be permanently occupied on your drive, so take this into consideration. See more information about ccache on Google’s android build environment initialization page.

Helpful Tip

If you are a very active developer, working on many other projects than just Android, you might prefer to keep your Android ccache independent (because it’s huge and can slow down the efficiency of ccache in your other projects). Beginning with CyanogenMod 12.1, you can specify environment variables for the location and size of CyanogenMod’s ccache. Some syntax examples: export ANDROID_CCACHE_DIR="$HOME/android/.ccache" and export ANDROID_CCACHE_SIZE="50G".

Start the build

Time to start building! So now type:

$ croot
$ brunch otter

The build should begin.

Helpful Tip

If the build doesn’t start, try lunch and choose your device from the menu. If that doesn’t work, try breakfast and choose from the menu. The command make otter should then work.

Helpful Tip

A second, bonus tip! If you get a command not found error for croot, brunch, or lunch, be sure you’ve done the source build/envsetup.sh command in this Terminal session from the ~/android/system directory.

Helpful Tip

A third tip! If the build to fails while downloading Gello, you’ll need to import a missing certificate into Maven’s truststore. Detailed instructions on how to do that can be found here

If the build breaks…

  • If you experience this not-enough-memory-related error…
ERROR: signapk.jar failed: return code 1make: *** [out/target/product/otter/cm_otter-ota-eng.root.zip] Error 1

…you may want to make the following change to ~/android/system/build/tools/releasetools/common.py:

Search for instances of -Xmx2048m (it should appear either under OPTIONS.java_args or near usage of signapk.jar), and replace it with -Xmx1024m or -Xmx512m.

Then start the build again (with brunch).

  • If you see a message about things suddenly being “killed” for no reason, your (virtual) machine may have run out of memory or storage space. Assign it more resources and try again.

Install the build

Assuming the build completed without error (it will be obvious when it finishes), type:

$ cd $OUT

in the same terminal window that you did the build. Here you’ll find all the files that were created. The stuff that will go in /system is in a folder called system. The stuff that will become your ramdisk is in a folder called root. And your kernel is called… kernel.

But that’s all just background info. The two files we are interested in are (1) recovery.img, which contains CyanogenMod Recovery, and (2) cm-13.0-20161224-UNOFFICIAL-otter.zip, which is the CyanogenMod installation package.

Install CyanogenMod

Back to the $OUT directory on your computer– you should see a file that looks something like:

cm-13.0-20161224-UNOFFICIAL-otter.zip

Note:

The above file name may vary depending on the version of CM you are building. Your build may not include a version number or may identify itself as a “KANG” rather than UNOFFICIAL version. Regardless, the file name will end in .zip and should be titled similarly to official builds.

Now you can flash the cm...zip file above as usual via recovery mode. Before doing so, now is a good time to make a backup of whatever installation is currently running on the device in case something goes wrong with the flash attempt. While CyanogenMod Recovery doesn’t have a backup feature, there are other custom recoveries available that do. You can also use something like Titanium Backup (root required) as an alternative.

Success! So….what’s next?

You’ve done it! Welcome to the elite club of self-builders. You’ve built your operating system from scratch, from the ground up. You are the master/mistress of your domain… and hopefully you’ve learned a bit on the way and had some fun too.

Now that you’ve succeeded in building CyanogenMod for your device, here are some suggestions on what to do next.

Also, be sure to take a glance at the Dev Center on this wiki for all kinds of more detailed information about developer topics ranging from collecting logs, understanding what’s in the source code directories, submitting your own contributions, porting CyanogenMod to new devices, and a lot more.

Congrats again!

Content of this page is based on informations from wiki.cyanogenmod.org, under CC BY-SA 3.0 licence.